



# DEVELOPMENT APPLICATION

City of Rockwall  
Planning and Zoning Department  
385 S. Goliad Street  
Rockwall, Texas 75087

## STAFF USE ONLY

PLANNING & ZONING CASE NO.

NOTE: THE APPLICATION IS NOT CONSIDERED ACCEPTED BY THE CITY UNTIL THE PLANNING DIRECTOR AND CITY ENGINEER HAVE SIGNED BELOW.

DIRECTOR OF PLANNING:

CITY ENGINEER:

PLEASE CHECK THE APPROPRIATE BOX BELOW TO INDICATE THE TYPE OF DEVELOPMENT REQUEST (SELECT ONLY ONE BOX):

### PLATTING APPLICATION FEES:

- MASTER PLAT (\$100.00 + \$15.00 ACRE)<sup>1</sup>
- PRELIMINARY PLAT (\$200.00 + \$15.00 ACRE)<sup>1</sup>
- FINAL PLAT (\$300.00 + \$20.00 ACRE)<sup>1</sup>
- REPLAT (\$300.00 + \$20.00 ACRE)<sup>1</sup>
- AMENDING OR MINOR PLAT (\$150.00)
- PLAT REINSTATEMENT REQUEST (\$100.00)

### SITE PLAN APPLICATION FEES:

- SITE PLAN (\$250.00 + \$20.00 ACRE)<sup>1</sup>
- AMENDED SITE PLAN/ELEVATIONS/LANDSCAPING PLAN (\$100.00)

### ZONING APPLICATION FEES:

- ZONING CHANGE (\$200.00 + \$15.00 ACRE)<sup>1</sup>
- SPECIFIC USE PERMIT (\$200.00 + \$15.00 ACRE)<sup>1+2</sup>
- PD DEVELOPMENT PLANS (\$200.00 + \$15.00 ACRE)<sup>1</sup>

### OTHER APPLICATION FEES:

- TREE REMOVAL (\$75.00)
- VARIANCE REQUEST/SPECIAL EXCEPTIONS (\$100.00)<sup>2</sup>

### NOTES:

<sup>1</sup> IN DETERMINING THE FEE, PLEASE USE THE EXACT ACREAGE WHEN MULTIPLYING BY THE PER ACRE AMOUNT. FOR REQUESTS ON LESS THAN ONE ACRE, ROUND UP TO ONE (1) ACRE.  
<sup>2</sup> A \$1,000.00 FEE WILL BE ADDED TO THE APPLICATION FEE FOR ANY REQUEST THAT INVOLVES CONSTRUCTION WITHOUT OR NOT IN COMPLIANCE TO AN APPROVED BUILDING PERMIT.

## PROPERTY INFORMATION (PLEASE PRINT)

ADDRESS 1540 I-30 Rockwall, TX 75087

SUBDIVISION Rockwall Recreation Addition

LOT 1

BLOCK 1

GENERAL LOCATION Located off I-30 Service Road & Commerce Street

## ZONING, SITE PLAN AND PLATTING INFORMATION (PLEASE PRINT)

CURRENT ZONING L1

CURRENT USE Auto Dealer

PROPOSED ZONING

PROPOSED USE

ACREAGE 7.17

LOTS [CURRENT]

LOTS [PROPOSED]

**SITE PLANS AND PLATS:** BY CHECKING THIS BOX YOU ACKNOWLEDGE THAT DUE TO THE PASSAGE OF HB3167 THE CITY NO LONGER HAS FLEXIBILITY WITH REGARD TO ITS APPROVAL PROCESS, AND FAILURE TO ADDRESS ANY OF STAFF'S COMMENTS BY THE DATE PROVIDED ON THE DEVELOPMENT CALENDAR WILL RESULT IN THE DENIAL OF YOUR CASE.

## OWNER/APPLICANT/AGENT INFORMATION (PLEASE PRINT/CHECK THE PRIMARY CONTACT/ORIGINAL SIGNATURES ARE REQUIRED)

OWNER 1540 East IH 30 Rockwall, LLC

APPLICANT The Charles Morgan Group, LP

CONTACT PERSON Chase Cooley

CONTACT PERSON Davin Marceau

ADDRESS 1540 E. IH 30, STE 150

ADDRESS 1540 E. IH 30, STE 150

CITY, STATE & ZIP

CITY, STATE & ZIP

PHONE

PHONE

E-MAIL

E-MAIL

## NOTARY VERIFICATION (REQUIRED)

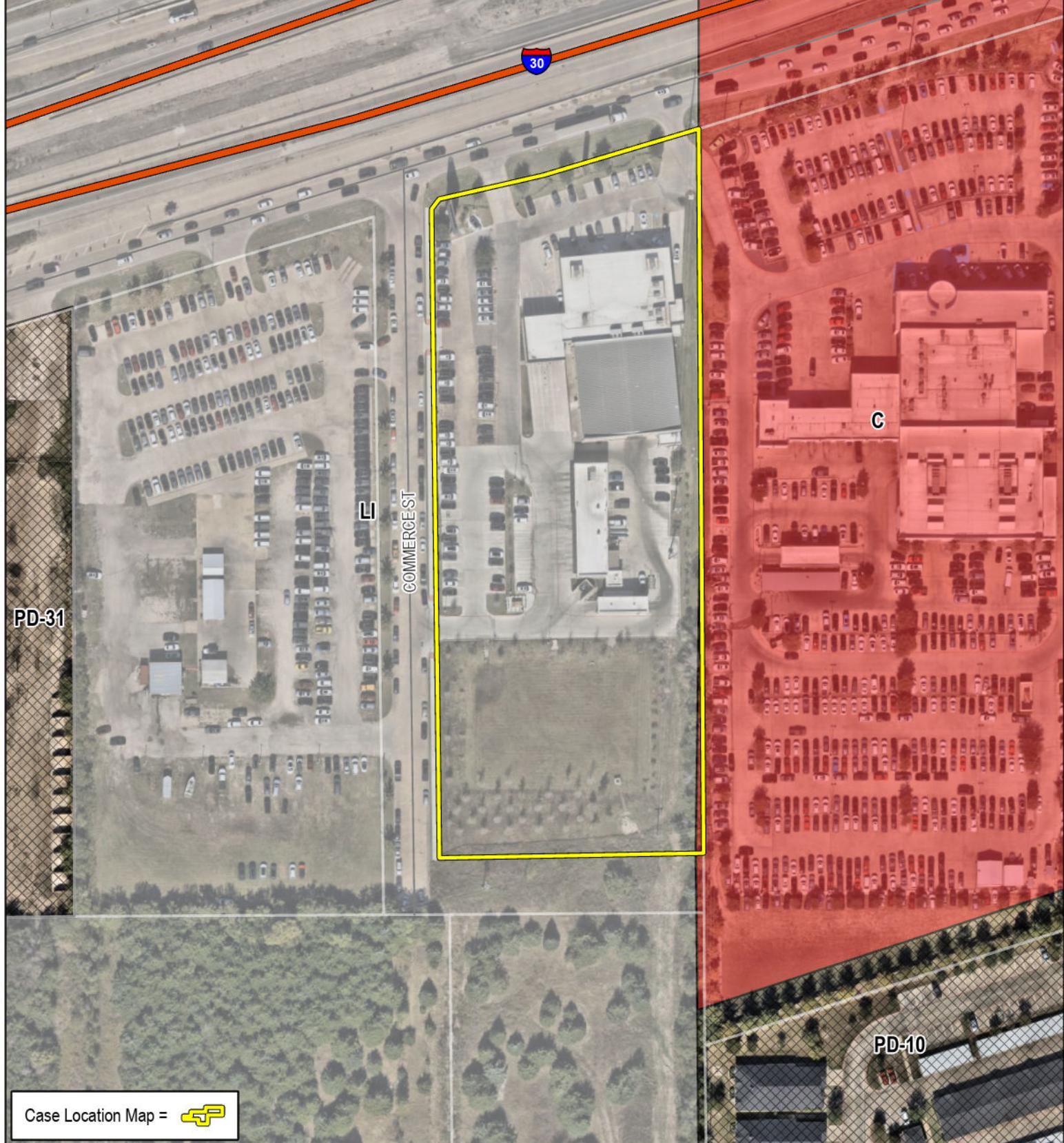
BEFORE ME, THE UNDERSIGNED AUTHORITY, ON THIS DAY PERSONALLY APPEARED CHASE E. COOLEY [OWNER] THE UNDERSIGNED, WHO STATED THE INFORMATION ON THIS APPLICATION TO BE TRUE AND CERTIFIED THE FOLLOWING:

"I HEREBY CERTIFY THAT I AM THE OWNER FOR THE PURPOSE OF THIS APPLICATION: ALL INFORMATION SUBMITTED HEREIN IS TRUE AND CORRECT; AND THE APPLICATION FEE OF \$ 100.00, TO COVER THE COST OF THIS APPLICATION, HAS BEEN PAID TO THE CITY OF ROCKWALL ON THIS THE 11th DAY OF December, 2025. BY SIGNING THIS APPLICATION, I AGREE THAT THE CITY OF ROCKWALL (I.E. 'CITY') IS AUTHORIZED AND PERMITTED TO PROVIDE INFORMATION CONTAINED WITHIN THIS APPLICATION TO THE PUBLIC. THE CITY IS ALSO AUTHORIZED AND PERMITTED TO REPRODUCE ANY COPYRIGHTED INFORMATION SUBMITTED IN CONJUNCTION WITH THIS APPLICATION, IF SUCH REPRODUCTION IS ASSOCIATED OR IN RESPONSE TO A REQUEST FOR PUBLIC INFORMATION."

GIVEN UNDER MY HAND AND SEAL OF OFFICE ON THIS THE 11th DAY OF December, 2025.

OWNER'S SIGNATURE

Linda Suzanne Groover


NOTARY PUBLIC IN AND FOR THE STATE OF TEXAS





0 50 100 200 300 400 Feet

Z2025-076: Specific Use Permit (SUP) to Exceed the Maximum Permissible Height at 1540 E. IH-30



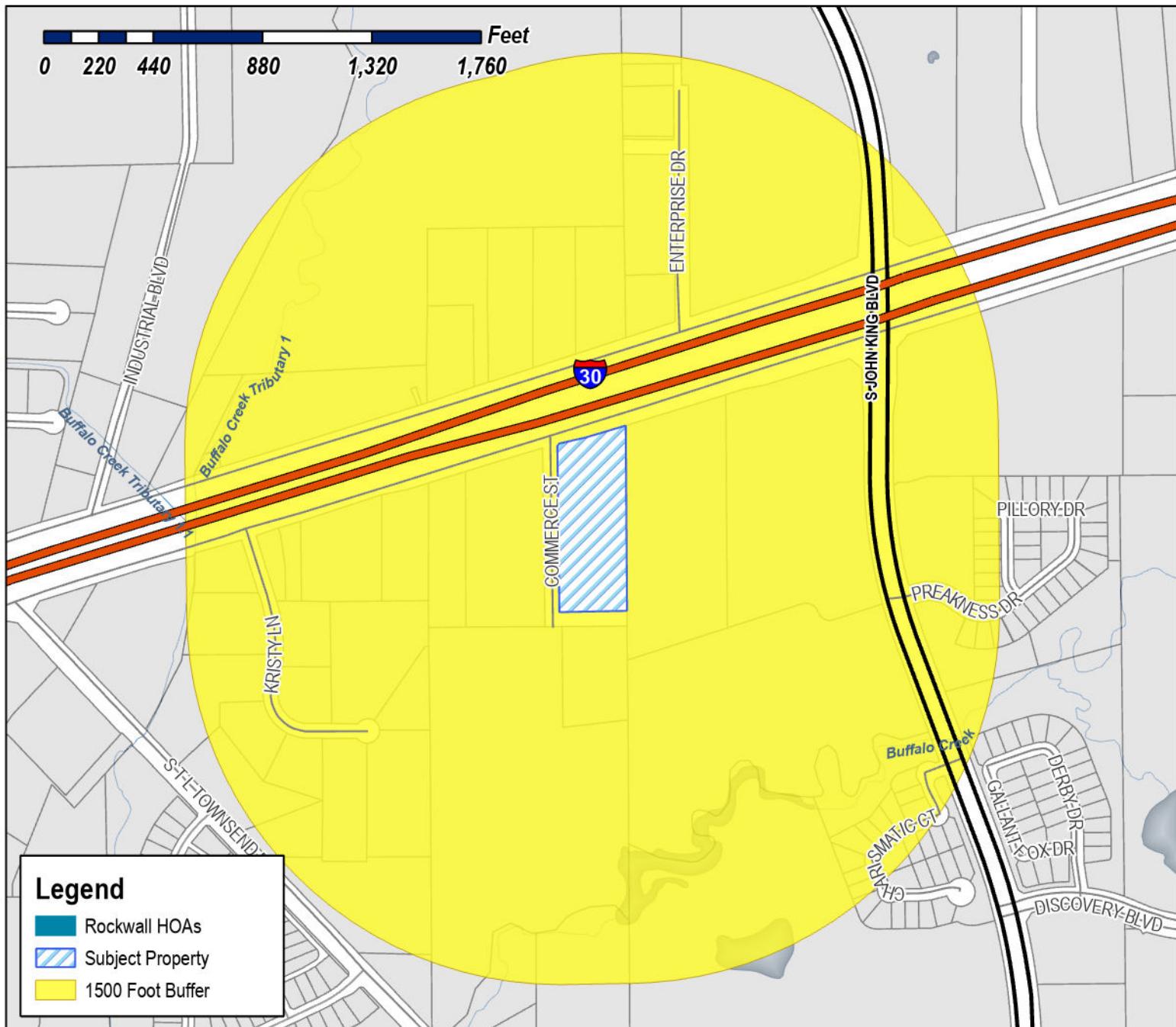
Case Location Map = 

## City of Rockwall



Planning & Zoning Department  
385 S. Goliad Street  
Rockwall, Texas 75087  
(P): (972) 771-7745  
(W): [www.rockwall.com](http://www.rockwall.com)

The City of Rockwall GIS maps are continually under development and therefore subject to change without notice. While we endeavor to provide timely and accurate information, we make no guarantees. The City of Rockwall makes no warranty, express or implied, including warranties of merchantability and fitness for a particular purpose. Use of the information is the sole responsibility of the user.






# City of Rockwall

Planning & Zoning Department  
385 S. Goliad Street  
Rockwall, Texas 75087  
(P): (972) 771-7745  
(W): [www.rockwall.com](http://www.rockwall.com)

The City of Rockwall GIS maps are continually under development and therefore subject to change without notice. While we endeavor to provide timely and accurate information, we make no guarantees. The City of Rockwall makes no warranty, express or implied, including warranties of merchantability and fitness for a particular purpose. Use of the information is the sole responsibility of the user.



## Legend

- Rockwall HOAs
- Subject Property
- 1500 Foot Buffer

**Case Number:** Z2025-076

**Case Name:** Specific Use Permit (SUP) to Exceed the Maximum Permissible Height

**Case Type:** Zoning

**Zoning:** Light Industrial (LI) District

**Case Address:** 1540 I-30

**Date Saved:** 12/15/2025

For Questions on this Case Call (972) 771-7745





# City of Rockwall

Planning & Zoning Department  
385 S. Goliad Street  
Rockwall, Texas 75087  
(P): (972) 771-7745  
(W): [www.rockwall.com](http://www.rockwall.com)

The City of Rockwall GIS maps are continually under development and therefore subject to change without notice. While we endeavor to provide timely and accurate information, we make no guarantees. The City of Rockwall makes no warranty, express or implied, including warranties of merchantability and fitness for a particular purpose. Use of the information is the sole responsibility of the user.



**Case Number:** Z2025-076

**Case Name:** Specific Use Permit (SUP) to Exceed the Maximum Permissible Height

**Case Type:** Zoning

**Zoning:** Light Industrial (LI) District

**Case Address:** 1540 I-30

**Date Saved:** 12/15/2025

For Questions on this Case Call: (972) 771-7745



RESIDENT  
130 NORTH SERVICE RD  
ROCKWALL, TX 75087

LITHIA REAL ESTATE INC  
150 N BARTLETT STREET  
MEDFORD, OR 97501

RESIDENT  
1520 E I30  
ROCKWALL, TX 75087

RESIDENT  
1530 S I30  
ROCKWALL, TX 75087

RESIDENT  
1535 I30  
ROCKWALL, TX 75087

RESIDENT  
1540 I30  
ROCKWALL, TX 75087

RESIDENT  
1545 E INTERSTATE 30  
ROCKWALL, TX 75087

RESIDENT  
1550 E I30  
ROCKWALL, TX 75087

RESIDENT  
1551 E I30  
ROCKWALL, TX 75087

AM ROCKWALL INVESTMENTS LP  
A TEXAS LTD PARTNERSHIP  
1551 E Interstate 30 Ste A  
Rockwall, TX 75087

RESIDENT  
1600 E INTERSTATE 30  
ROCKWALL, TX 75087

RESIDENT  
1650 S JOHN KING  
ROCKWALL, TX 75087

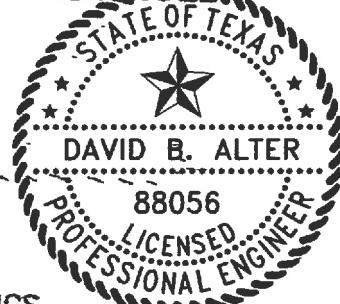
DVB FAMILY LIMITED PARTNERSHIP  
2421 KATHRYN DR  
HEATH, TX 75032

DVB FAMILY LIMITED PARTNERSHIP  
2421 KATHRYN DR  
HEATH, TX 75032

C2LA, LLC  
382 Ranch Trl  
Rockwall, TX 75032

H E B LP  
646 SOUTH FLORES STREET  
SAN ANTONIO, TX 78204

DYNACAP HOLDINGS LTD &  
CHARLES SMITH  
709 W Rusk St Ste B  
Rockwall, TX 75087


ZBH/1535 E INTERSTATE 30 LTD  
9669 JOURDAN WAY  
DALLAS, TX 75230

1540 EAST IH 30 ROCKWALL LLC  
M/R  
ROCKWALL, TX 75087

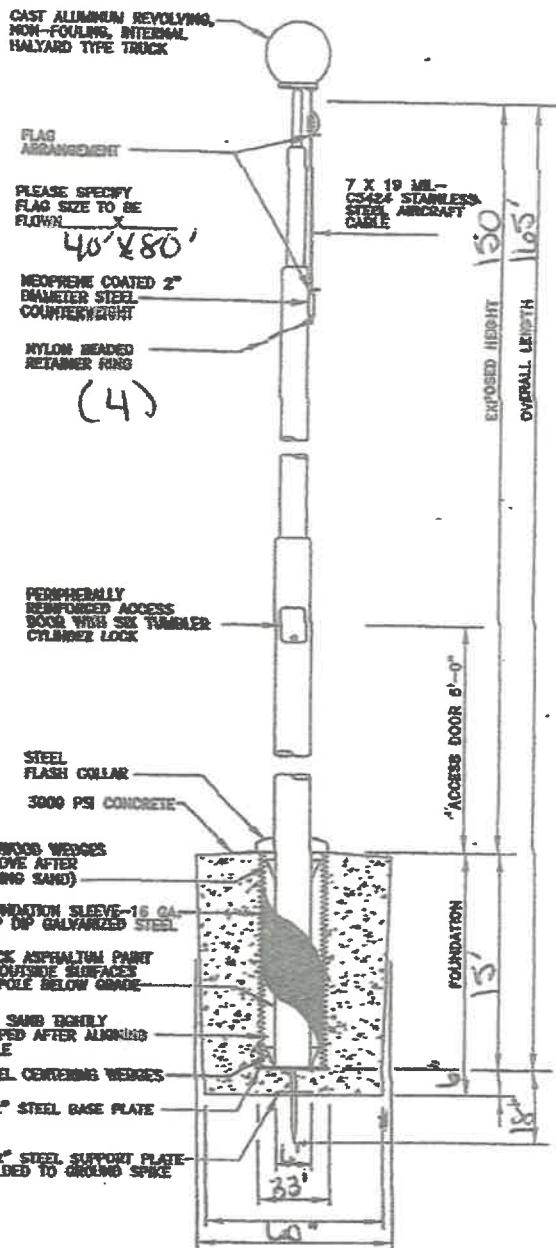
STAR HUBBARD LLC  
C/O STEADFAST COMPANIES  
PO BOX 530292  
BIRMINGHAM, AL 35253



DIMINISHING SECTION STEEL  
CONCEALED HALYARD  
GROUND SET FLAGPOLE



STANDARD FITTINGS

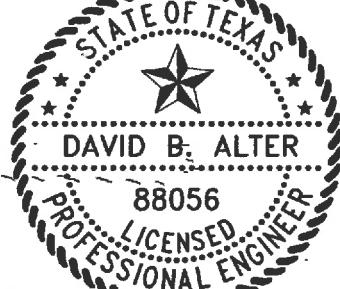

FINAL: (The flagpole division of NAAMM recommends that no final, other than the internal Halyard Truck itself be used on the Concealed Halyard Flagpole.)

TRUCK: Heavy duty, cast aluminium, internal halyard type, revolving non-fouling, gold powder coated, equipped with upper and lower sealed bearings assemblies and a stainless steel spindle for flagpoles up to 130'. Larger flagpoles will come with two spun steel hemispheres, automotive type sealed bearing assemblies and a welded in steel spindle.

HALYARD: Halyard and flag arrangement are 1/8" and 3/16" stainless steel aircraft cable, with attachment ends crimped over 1/8" stainless steel yokes and joined by a stainless steel quicklink. Cable is two piece, joined by a stainless steel swivel at mid-point. The flag arrangement is sized to accommodate an appropriate size flag and is supplied complete with two heavy duty swivel snaps, neoprene coated counterweight, and beaded nylon retainer rings.

WINCH: Stainless steel, direct drive, accessible for maintenance only through a reinforced access opening, which is covered by a removable door finished to match flagpole shaft and contains a six tumber cylinder lock. Winch is gearless, operable only by a removable crank handle and locks in any position upon removal of the crank handle.

FOUNDATION TUBE: Fabricated from 16GA. galvanized steel, with a steel base plate whose square dimension is 4" larger than the I.D. of the sleeve. A setting plate 6" square is securely welded to the ground spike 6" below the base plate. The ground spike is 3/4" diameter and 36" in length.




| PROJECT NO.                    | GROUND SET DIM. SECTION STEEL FLAGPOLE |                                       |
|--------------------------------|----------------------------------------|---------------------------------------|
| LOC. 1540-130                  | EXP. HT. 150'                          | OVERALL HT. 116 1/2'                  |
| ARCHT:                         |                                        | NO. OF SEC. 5                         |
| CONT R:                        | BUTT. DIA. 24"                         | TOP DIA. 10 3/4" WALL THICKNESS .375" |
| CUST: Clay Colby Hyundai Ranch | SHP IN 5 SEC.                          | FINISH: Powder Coat White             |

| EXPOSED HEIGHT | OVERALL LENGTH | TOP DIAMETER | BOTTOM DIAMETER | BUTT WALL THICKNESS | SHIP SECTIONS | NO. OF SECTIONS | FLAG SIZE | SHIPPING WEIGHT |
|----------------|----------------|--------------|-----------------|---------------------|---------------|-----------------|-----------|-----------------|
| 150'           | 116 1/2'       | 10 3/4"      | 24"             | .375"               | 5             | 5               | 40'x80'   | 15,000 lbs      |

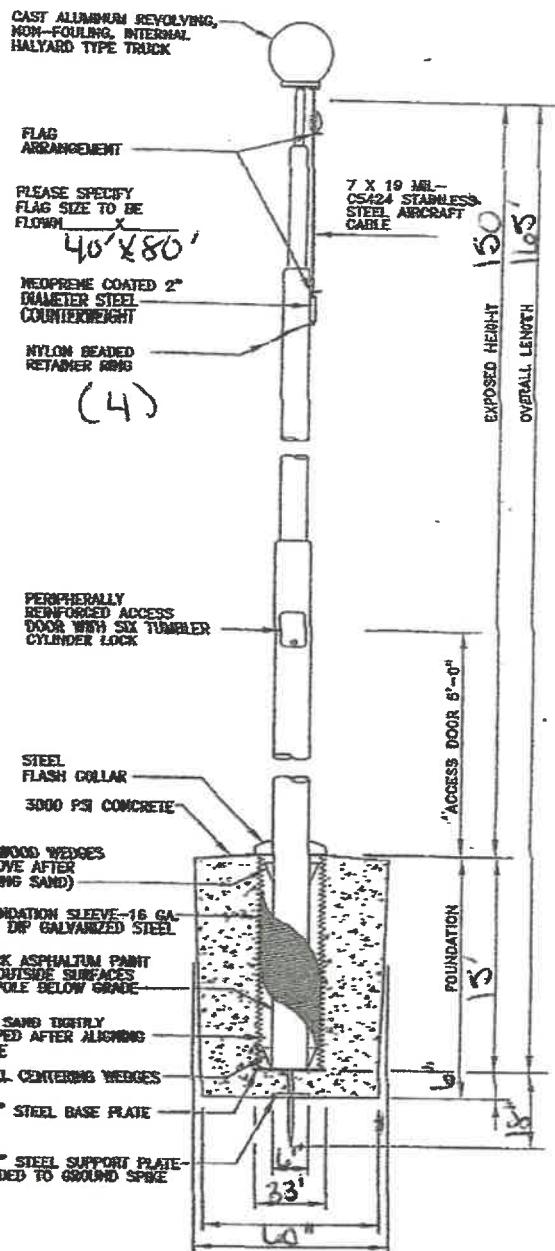
**WARNING:** Extreme Caution should be exercised when installing flagpoles near overhead power lines, or in the vicinity of buried cables.

DIMINISHING SECTION STEEL  
CONCEALED HALYARD  
GROUND SET FLAGPOLE



## STANDARD FITTINGS

10/30/2025


**FINAL:** (The flagpole division of NAAMM recommends that no Final, other than the internal Halyard Truck itself be used on the Concealed Halyard Flagpole.)

**TRUCK:** Heavy duty, cast aluminum, internal halyard type, revolving non-fouling, gold powder coated, equipped with upper and lower sealed bearings assemblies and a stainless steel spindle for flagpoles up to 130'. Larger flagpoles will come with two spun steel hemispheres, automotive type sealed bearing assemblies and a welded in steel spindle.

**HALYARD:** Halyard and flag arrangement are  $1/8"$  and  $3/16"$  stainless steel aircraft cable, with attachment ends crimped over  $1/8"$  stainless steel yokes and joined by a stainless steel quicklink. Cable is two piece, joined by a stainless steel swivel at mid-point. The flag arrangement is sized to accommodate an appropriate size flag and is supplied complete with two heavy duty swivel snaps, neoprene coated counterweight, and beaded nylon retainer rings.

**WINCH:** Stainless steel, direct drive, accessible for maintenance only through a reinforced access opening, which is covered by a removable door finished to match flagpole shaft and contains a six tumber cylinder lock. Winch is gearless, operable only by a removable crank handle and locks in any position upon removal of the crank handle.

**FOUNDATION TUBE:** Fabricated from 16GA. galvanized steel, with a steel base plate whose square dimension is 4" larger than the I.D. of the sieve. A setting plate 6" square is securely welded to the ground spike 6" below the base plate. The ground spike is 3/4" diameter and 36" in length.



|                                |                                        |                  |                      |
|--------------------------------|----------------------------------------|------------------|----------------------|
| PROJECT NO.                    | GROUND SET OVAL SECTION STEEL FLAGPOLE |                  |                      |
| LOC. 1540 - I 30               | EXP. HT. 150'                          | OVERALL HT. 115' | NO. OF SEC. 5        |
| ARCHT:                         | BUTT. DIA. 34"                         | TOP DIA. 103/4"  | WALL THICKNESS .375" |
| CONT. R:                       | SHP IN 5                               | SEC.             | FINISH: Powder Coat  |
| CUST: Clay Colby Hyundai Ranch | White                                  |                  |                      |

US Flag,  
40' x 80'

| EXPOSED | OVERALL | TOP      | BOTTOM   | BUTT WALL | SHIP     | NO. OF   | FLAG   | SHIPPING   |
|---------|---------|----------|----------|-----------|----------|----------|--------|------------|
| HEIGHT  | LENGTH  | DIAMETER | DIAMETER | THICKNESS | SECTIONS | SECTIONS | SIZE   | WEIGHT     |
| 150     | 165'    | 10 3/4"  | 24"      | .375"     | 5        | 5        | 40x50' | 15,000 lbs |

**WARNING:** Extreme Caution should be exercised when installing flagpoles near overhead power lines, or in the vicinity of buried cables.

# STRUCTURAL CALCULATIONS

*Project:*

**Clay Cooley Hyundai Flagpole & Footing**

1540 I-30

Rockwall, TX 75087

*Project Number:* 14520

*Prepared For:*

**Symonds Flags and Poles**

250 W. Airport Freeway

Irving, TX 75062

*Date:*

October 2025

*Prepared By:*

**Adam Pope, EIT**

*Reviewed By:*

**David B. Alter, PE**



10/30/2025

**Ensign Engineering**

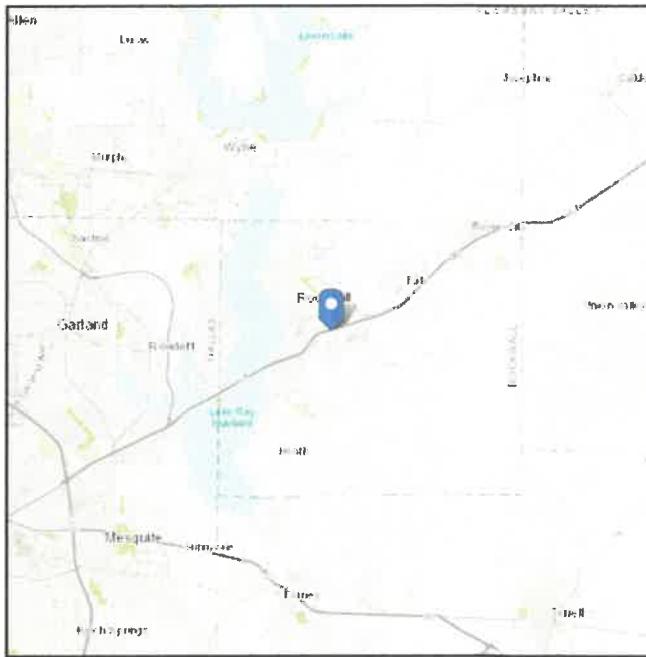
45 West 10000 South, Suite 500

Sandy, Utah 84070

P: (801) 255-0529

F: (801) 255-4449

[ensigneng.com](http://ensigneng.com)


**ENSIGN**  
THE STANDARD IN ENGINEERING



**Address:**  
1540 E Interstate 30  
Rockwall, Texas  
75087

## ASCE Hazards Report

**Standard:** ASCE/SEI 7-22    **Latitude:** 32.914362  
**Risk Category:** II    **Longitude:** -96.436478  
**Soil Class:** Default    **Elevation:** 573.0197118668139 ft  
(NAVD 88)



### Wind

#### Results:

|                    |          |
|--------------------|----------|
| Wind Speed         | 105 Vmph |
| 10-year MRI        | 75 Vmph  |
| 25-year MRI        | 80 Vmph  |
| 50-year MRI        | 85 Vmph  |
| 100-year MRI       | 90 Vmph  |
| 300-year MRI       | 100 Vmph |
| 700-year MRI       | 105 Vmph |
| 1,700-year MRI     | 115 Vmph |
| 3,000-year MRI     | 117 Vmph |
| 10,000-year MRI    | 126 Vmph |
| 100,000-year MRI   | 145 Vmph |
| 1,000,000-year MRI | 162 Vmph |

Data Source:

ASCE/SEI 7-22, Fig. 26.5-1B and Figs. CC.2-1–CC.2-4, and Section 26.5.2

Date Accessed:

Wed Oct 29 2025



Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-22 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years). Values for 10-year MRI, 25-year MRI, 50-year MRI and 100-year MRI are Service Level wind speeds, all other wind speeds are Ultimate wind speeds.

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-22 Section 26.2.



---

The ASCE Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE Hazard Tool.

### GENERAL PROJECT INFORMATION

Latitude: 32.91 North (Approximate)  
 Longitude: -96.44 West (Approximate)

Client: Symonds Flags and Poles

### PROJECT DESCRIPTION

Structural Calculations for  $h := 150 \text{ ft}$  flag pole footing

### GENERAL DESIGN CRITERIA

Structure Type: Flag Pole  
 Design Code: 2021 IBC / FP1001-07  
 Risk Category: II

### DESIGN LOADS

#### Wind Loads:

Wind Speed:  $WS := 105 \text{ mph}$  - 3 second gust (strength level)  
 Exposure: C

### FOUNDATION CRITERIA & SPECIFICATIONS

|               |                            |
|---------------|----------------------------|
| Soils Report: | Company: Presumptive       |
|               | Date: N/A                  |
|               | Report/Project Number: N/A |
|               | Contact: N/A               |

Allowable Bearing Pressure: 1500 psf

Passive Pressure:  $P_{\text{passive}} := 2 \cdot 150 \frac{\text{psf}}{\text{ft}} = 300 \frac{\text{psf}}{\text{ft}}$   
 Increase Per IBC 1806.3.4

Coefficient of Friction,  $\mu$ : 0.35

Foundation Type:

Footing Type: Pole Footing

### FOUNDATION CRITERIA & SPECIFICATIONS

#### **CONCRETE & REINFORCING STEEL SPECIFICATIONS**

Concrete Strength,  $f'c$ :

Footings/Foundation Walls: 3000 psi

Steel Pole Segments: API 5Lx46 Grade B (fy=46 ksi)

## Flagpole Design

### Flagpole Geometry

$$h = 150 \text{ ft}$$

*Total Pole Height from the Ground*

$$w_1 := 24 \text{ in}$$

$$w_3 := 15 \text{ in}$$

*Pole Widths*

$$w_2 := 19.5 \text{ in}$$

$$w_4 := 10.75 \text{ in}$$

$$h_1 := 50 \text{ ft}$$

$$h_3 := 40 \text{ ft}$$

*Respective Pole Heights*

$$h_2 := 40 \text{ ft}$$

$$h_4 := 20 \text{ ft}$$

### Wind loads on pole (Per NAAMM / FP1001-07)

$$WS = 105$$

*Wind speed (mph)*

$$V := \sqrt{0.6 \cdot WS}$$

*Wind velocity ASCE 7-16 (mph) adjusted to ASCE 7-05*

$$G := 1.14$$

*Gust effect factor recommended for flag poles*

### Segment 4 Calculations

$$z_4 := 140 \text{ ft}$$

*Avg. Distance From Ground (ft)*

$$d_4 := \frac{w_4}{ft} = 0.896$$

$$C_{deq4} := \frac{129}{(V \cdot d_4)^{1.3}} = 0.49$$

*Drag coefficient FP1001 Table 3.2.4.*

$$C_{d4} := \text{if}(C_{deq4} < 0.45, 0.45, \text{if}(C_{deq4} > 1.1, 1.1, C_{deq4})) = 0.489$$

$$C_{h4} := 2.01 \cdot \left( \frac{z_4}{900 \text{ ft}} \right)^{\frac{2}{9.5}} = 1.36$$

*Height coefficient FG1001 Eq. 2*

$$P_4 := 0.00256 \cdot V^2 \cdot C_{d4} \cdot C_{h4} \cdot G = 12.826$$

*Wind Pressure (psf) FP1001 Eq. 1*

$$A_4 := h_4 \cdot w_4 = 17.917 \text{ ft}^2$$

*Pole Area*

$$F_4 := P_4 \cdot \text{psf} \cdot A_4 = 229.799 \text{ lbf}$$

*Wind Force as a Point Load (Lbs)*

$$M_{b4} := A_4 \cdot P_4 \cdot \text{psf} \cdot z_4 = 32.172 \text{ kip} \cdot \text{ft}$$

*Moment @ base resulting from segment 4*

Segment 3 Calculations

$$z_3 := 110 \text{ ft}$$

Avg. Distance From Ground (ft)

$$d_3 := \frac{w_3}{ft} = 1.25$$

$$C_{deq3} := \frac{129}{(V \cdot d_3)^{1.3}} = 0.32$$

Drag coefficient FP1001 Table 3.2.4.

$$C_{d3} := \text{if}(C_{deq3} < 0.45, 0.45, \text{if}(C_{deq3} > 1.1, 1.1, C_{deq3})) = 0.45$$

$$C_{h3} := 2.01 \cdot \left( \frac{z_3}{900 \text{ ft}} \right)^{\frac{2}{9.5}} = 1.29$$

Height coefficient FG1001 Eq. 2

$$P_3 := 0.00256 \cdot V^2 \cdot C_{d3} \cdot C_{h3} \cdot G = 11.218$$

Wind Pressure (psf) FP1001 Eq. 1

$$A_3 := h_3 \cdot w_3 = 50 \text{ ft}^2$$

Pole Area

$$F_3 := P_3 \cdot psf \cdot A_3 = 560.886 \text{ lbf}$$

Wind Force as a Point Load (Lbs)

$$M_{b3} := A_3 \cdot P_3 \cdot psf \cdot z_3 = 61.697 \text{ kip} \cdot \text{ft}$$

Moment @ base resulting from segment 3

Segment 2 Calculations

$$z_2 := 70 \text{ ft}$$

Avg. Distance From Ground (ft)

$$d_2 := \frac{w_2}{ft} = 1.625$$

$$C_{deq2} := \frac{129}{(V \cdot d_2)^{1.3}} = 0.23$$

Drag coefficient FP1001 Table 3.2.4.

$$C_{d2} := \text{if}(C_{deq2} < 0.45, 0.45, \text{if}(C_{deq2} > 1.1, 1.1, C_{deq2})) = 0.45$$

$$C_{h2} := 2.01 \cdot \left( \frac{z_2}{900 \text{ ft}} \right)^{\frac{2}{9.5}} = 1.17$$

Height coefficient FG1001 Eq. 2

$$P_2 := 0.00256 \cdot V^2 \cdot C_{d2} \cdot C_{h2} \cdot G = 10.2$$

Wind Pressure (psf) FP1001 Eq. 1

$$A_2 := h_2 \cdot w_2 = 65 \text{ ft}^2$$

Pole Area

$$F_2 := P_2 \cdot psf \cdot A_2 = 662.968 \text{ lbf}$$

Wind Force as a Point Load (Lbs)

$$M_{b2} := A_2 \cdot P_2 \cdot psf \cdot z_2 = 46.408 \text{ kip} \cdot \text{ft}$$

Moment @ base resulting from segment 2

Segment 1 Calculations

$$z_1 := 25 \text{ ft}$$

Avg. Distance From Ground (ft)

$$d_1 := \frac{w_1}{ft} = 2$$

$$C_{deq1} := \frac{129}{(V \cdot d_1)^{1.3}} = 0.17$$

Drag coefficient FP1001 Table 3.2.4.

$$C_{d1} := \text{if}(C_{deq1} < 0.45, 0.45, \text{if}(C_{deq1} > 1.1, 1.1, C_{deq1})) = 0.45$$

$$C_{h1} := \text{if}\left(z_1 < 16.4 \text{ ft}, 0.86, 2.01 \cdot \left(\frac{z_1}{900 \text{ ft}}\right)^{\frac{2}{9.5}}\right) = 0.95 \quad \text{Height coefficient FG1001 Eq. 2 (if } z_1 < 16.4' \text{ } C_h = 0.86)$$

$$P_1 := 0.00256 \cdot V^2 \cdot C_{d1} \cdot C_{h1} \cdot G = 8.212$$

Wind Pressure (psf) FP1001 Eq. 1

$$A_1 := h_1 \cdot w_1 = 100 \text{ ft}^2$$

Pole Area

$$F_1 := P_1 \cdot \text{psf} \cdot A_1 = 821.184 \text{ lbf}$$

Wind Force as a Point Load (Lbs)

$$M_{b1} := A_1 \cdot P_1 \cdot \text{psf} \cdot z_1 = 20.53 \text{ kip} \cdot \text{ft}$$

Moment @ base resulting from segment 1

$$M_{bpole} := M_{b1} + M_{b2} + M_{b3} + M_{b4} = 160.807 \text{ kip} \cdot \text{ft}$$

Wind loads on flag (per NAAMM / FP1001-07)

$$h_f := 40 \text{ ft} \quad w_f := 80 \text{ ft} \quad z_f := 130 \text{ ft}$$

Flag geometry

$$C_{hf} := 2.01 \cdot \left(\frac{z_f}{900 \text{ ft}}\right)^{\frac{2}{9.5}} = 1.34$$

Height coefficient FG1001 Eq. 2

$$A_f := h_f \cdot w_f = 3200 \text{ ft}^2$$

Flag Area

$$F_f := 0.0014 \frac{\text{lbf}}{\text{ft}} \cdot V^2 \cdot \sqrt{A_f} \cdot C_{hf} \cdot G = 798.783 \text{ lbf}$$

Force on flag FG1001 Eq. 5  
 (polyester flag = worst case)

$$M_{bf} := F_f \cdot z_f = 103.842 \text{ kip} \cdot \text{ft}$$

Moment @ base resulting from the flag

$$F_d := \frac{F_f}{h_f} = 19.97 \text{ plf}$$

Moment @ Base

$$M_{btotal} := M_{bf} + M_{bpole} = 264.648 \text{ kip} \cdot \text{ft}$$

Moment @ Base of Segment 2

$$M_2 := F_4 \cdot (z_4 - h_1) + F_3 \cdot (z_3 - h_1) + F_2 \cdot (z_2 - h_1) + F_f \cdot (z_f - h_1)$$

$$M_2 = 131.497 \text{ kip} \cdot \text{ft}$$

Moment @ Base of Segment 3

$$M_3 := F_4 \cdot (z_4 - h_1 - h_2) + F_3 \cdot (z_3 - h_1 - h_2) + F_f \cdot (z_f - h_1 - h_2)$$

$$M_3 = 54.659 \text{ kip} \cdot \text{ft}$$

Moment @ Base of Segment 4

$$M_4 := F_4 \cdot (z_4 - h_1 - h_2 - h_3) + F_d \cdot h_4 \cdot \left( \frac{h_4}{2} \right) = 6.292 \text{ kip} \cdot \text{ft}$$

*Worst loading case for segment 4  
=full length of segment*

Section Modulii of Each Segment

$$T = 0.375 \text{ in}$$

$$S_1 := \frac{\pi \cdot (w_1^4 - (w_1 - 2T)^4)}{32 \cdot w_1} = 161.858 \text{ in}^3$$

$$S_3 := \frac{\pi \cdot (w_3^4 - (w_3 - 2T)^4)}{32 \cdot w_3} = 61.461 \text{ in}^3$$

$$S_2 := \frac{\pi \cdot (w_2^4 - (w_2 - 2T)^4)}{32 \cdot w_2} = 105.696 \text{ in}^3$$

$$S_4 := \frac{\pi \cdot (w_4^4 - (w_4 - 2T)^4)}{32 \cdot w_4} = 30.637 \text{ in}^3$$

$$Z_1 := \frac{w_1^3 - (w_1 - 2T)^3}{6} = 209.32 \text{ in}^3$$

$$Z_3 := \frac{w_3^3 - (w_3 - 2T)^3}{6} = 80.227 \text{ in}^3$$

$$Z_2 := \frac{w_2^3 - (w_2 - 2T)^3}{6} = 137.18 \text{ in}^3$$

$$Z_4 := \frac{w_4^3 - (w_4 - 2T)^3}{6} = 40.383 \text{ in}^3$$

Bending Stress Check of Each Segment (16.1-F8 AISC)

$$E := 29000 \text{ ksi} \quad F_y := 42 \text{ ksi} \quad \Omega_b := 1.67$$

**ALLOWABLE FACTORED  
STRENGTH PER CODE IS 40  
KSI FOR 42 KSI STEEL**

### Segment 4

$$D_t := \frac{w_4}{T} = 28.667 \quad F_8 := \frac{0.45 \cdot E}{F_y} = 310.714 \quad F_{cr} := \frac{0.33 \cdot E}{(D_t)} = 333.837 \text{ ksi}$$

$$F_{8apply} := \text{if}(D_t < F_8, \text{"PROCEED"}, \text{"REVISE"}) = \text{"PROCEED"}$$

### Yielding

$$M_{ny} := F_y \cdot Z_4 = 141.34 \text{ kip} \cdot \text{ft} \quad \frac{\Omega_b \cdot M_4}{M_{ny}} = 0.074 \quad \text{Must be} < 1$$

### Local Buckling

$$\lambda_p := 0.07 \cdot \frac{E}{F_y} = 48.333 \quad \lambda_r := 0.31 \cdot \frac{E}{F_y} = 214.048$$

$$\text{Check}_c := \text{if}(D_t < \lambda_p, \text{"Compact"}, \text{if}(D_t > \lambda_r, \text{"Slender"}, \text{"Non-compact"})) = \text{"Compact"}$$

$$M_{nb} := \text{if}\left(\text{Check}_c = \text{"Compact"}, \text{"N/A"}, \text{if}\left(\text{Check}_c = \text{"Slender"}, F_{cr} \cdot S_4, \left(\frac{0.021 \cdot E}{D_t} + F_y\right) \cdot S_4\right)\right) = \text{"N/A"}$$

### Segment 3

$$D_t := \frac{w_3}{T} = 40 \quad F_8 := \frac{0.45 \cdot E}{F_y} = 310.714 \quad F_{cr} := \frac{0.33 \cdot E}{(D_t)} = 239.25 \text{ ksi}$$

$$F_{8apply} := \text{if}(D_t < F_8, \text{"PROCEED"}, \text{"REVISE"}) = \text{"PROCEED"}$$

### Yielding

$$M_{ny} := F_y \cdot Z_3 = 280.793 \text{ kip} \cdot \text{ft} \quad \frac{\Omega_b \cdot M_3}{M_{ny}} = 0.325 \quad \text{Must be} < 1$$

### Local Buckling

$$\lambda_p := 0.07 \cdot \frac{E}{F_y} = 48.333 \quad \lambda_r := 0.31 \cdot \frac{E}{F_y} = 214.048$$

$$\text{Check}_c := \text{if}(D_t < \lambda_p, \text{"Compact"}, \text{if}(D_t > \lambda_r, \text{"Slender"}, \text{"Non-compact"})) = \text{"Compact"}$$

$$M_{nb} := \text{if}\left(\text{Check}_c = \text{"Compact"}, \text{"N/A"}, \text{if}\left(\text{Check}_c = \text{"Slender"}, F_{cr} \cdot S_3, \left(\frac{0.021 \cdot E}{D_t} + F_y\right) \cdot S_3\right)\right) = \text{"N/A"}$$

### Segment 2

$$D_t := \frac{w_2}{T} = 52 \quad F_8 := \frac{0.45 \cdot E}{F_y} = 310.714 \quad F_{cr} := \frac{0.33 \cdot E}{(D_t)} = 184.038 \text{ ksi}$$

$$F_{8apply} := \text{if}(D_t < F_8, \text{"PROCEED"}, \text{"REVISE"}) = \text{"PROCEED"}$$

### Yielding

$$M_{ny} := F_y \cdot Z_2 = 480.129 \text{ kip} \cdot ft \quad \frac{\Omega_b \cdot M_2}{M_{ny}} = 0.457 \quad \text{Must be} < 1$$

### Local Buckling

$$\lambda_p := 0.07 \cdot \frac{E}{F_y} = 48.333 \quad \lambda_r := 0.31 \cdot \frac{E}{F_y} = 214.048$$

$$\text{Check}_c := \text{if}(D_t < \lambda_p, \text{"Compact"}, \text{if}(D_t > \lambda_r, \text{"Slender"}, \text{"Non-compact"})) = \text{"Non-compact"}$$

$$M_{nb} := \text{if}\left(\text{Check}_c = \text{"Compact"}, \text{"N/A"}, \text{if}\left(\text{Check}_c = \text{"Slender"}, F_{cr} \cdot S_2, \left(\frac{0.021 \cdot E}{D_t} + F_y\right) \cdot S_2\right)\right) = 15221234.198 \frac{\text{lb} \cdot \text{ft}^2}{\text{s}^2}$$

### Segment 1

$$D_t := \frac{w_1}{T} = 64 \quad F_8 := \frac{0.45 \cdot E}{F_y} = 310.714 \quad F_{cr} := \frac{0.33 \cdot E}{(D_t)} = 149531.25 \text{ psi}$$

$$F_{8apply} := \text{if}(D_t < F_8, \text{"PROCEED"}, \text{"REVISE"}) = \text{"PROCEED"}$$

### Yielding

$$M_{ny} := F_y \cdot Z_1 = 732.621 \text{ kip} \cdot ft \quad \frac{\Omega_b \cdot M_{btotal}}{M_{ny}} = 0.603 \quad \text{Must be} < 1$$

### Local Buckling

$$\lambda_p := 0.07 \cdot \frac{E}{F_y} = 48.333 \quad \lambda_r := 0.31 \cdot \frac{E}{F_y} = 214.048$$

$$\text{Check}_c := \text{if}(D_t < \lambda_p, \text{"Compact"}, \text{if}(D_t > \lambda_r, \text{"Slender"}, \text{"Non-compact"})) = \text{"Non-compact"}$$

$$M_{nb} := \text{if}\left(\text{Check}_c = \text{"Compact"}, \text{"N/A"}, \text{if}\left(\text{Check}_c = \text{"Slender"}, F_{cr} \cdot S_1, \left(\frac{0.021 \cdot E}{D_t} + F_y\right) \cdot S_1\right)\right) = 694.852 \text{ kip} \cdot ft$$

$$\frac{\Omega_b \cdot M_{btotal}}{M_{nb}} = 0.636 \quad \text{Must be} < 1$$

At maximum wind, the pole with attached flag would not fail. However, the flag is not expected to stay attached with winds exceeding 50 mph. Calculations without the flag follow. The assumption is that the flag will rip from the pole before it is able to transfer maximum load to the pole.

**FLAG SHALL BE REMOVED BEFORE WIND SPEEDS REACH 75 MPH.**

Moment @ Base w/out Flag

$$M_{btotalwof} := M_{bpole} = 160.807 \text{ kip} \cdot \text{ft}$$

Moment @ base of segment 2 w/out flag

$$M_{2wof} := F_4 \cdot (z_4 - h_1) + F_3 \cdot (z_3 - h_1) + F_2 \cdot (z_2 - h_1) = 67.594 \text{ kip} \cdot \text{ft}$$

Moment @ base of segment 3 w/out flag

$$M_{3wof} := F_4 \cdot (z_4 - h_1 - h_2) + F_3 \cdot (z_3 - h_1 - h_2) = 22.708 \text{ kip} \cdot \text{ft}$$

Moment @ base of segment 4 w/out flag

$$M_{4wof} := F_4 \cdot (z_4 - h_1 - h_2 - h_3) = 2.298 \text{ kip} \cdot \text{ft}$$

Loads on steel sections less than when the flag is present. **Steel is adequate by inspection.**

## Footing Design

$$b := 4.5 \text{ ft}$$

*Diameter of footing in ft*

$$P' := F_1 + F_2 + F_3 + F_4 + F_f = 3073.62 \text{ lbf}$$

*Applied lateral force in lbs*

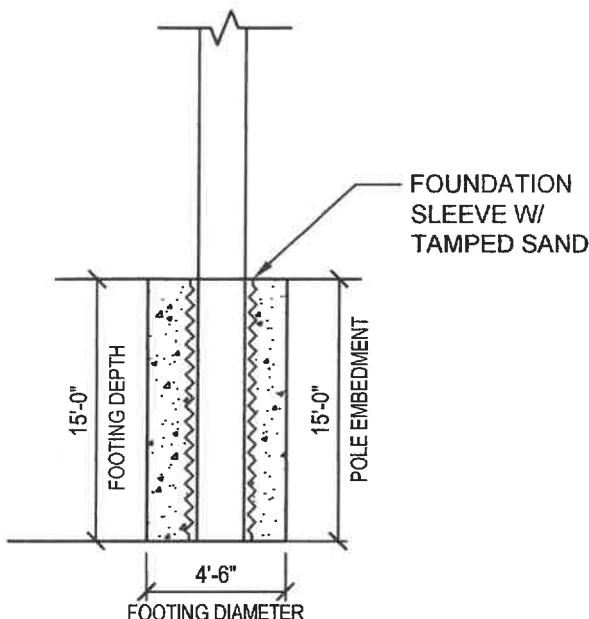
$$h' := \frac{M_{btotal}}{P'} = 86.103 \text{ ft}$$

*Distance in ft from ground surface to point of application of "P"*

$$S_1 := 1191.237 \text{ psf}$$

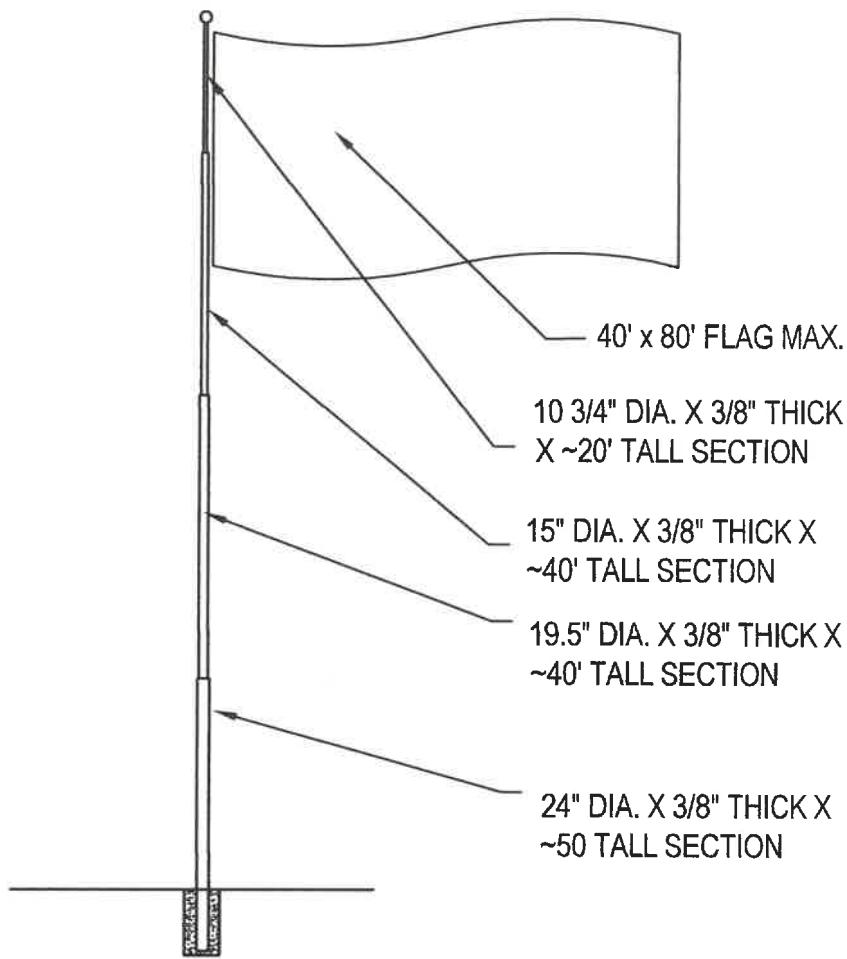
*Allowable Lateral soil bearing pressure as set forth in the IBC, Section 1806.2 based on depth of one-third the depth of embedment in psf*

\*Note to Engineer: Iterate Lateral Bearing Soil Pressure


$$A := \frac{2.34 \cdot P'}{S_1 \cdot b} = 1.342 \text{ ft}^2$$

$$d := 0.5 \cdot A \cdot \left( 1 + \left( 1 + \left( \frac{4.36 \cdot h'}{A} \right) \right)^{\frac{1}{2}} \right) = 11.91 \text{ ft}$$

*Depth of embedment in earth in ft but not over 12 ft for purpose of computing lateral pressure (IBC 1807.3, EQ 18-1)*

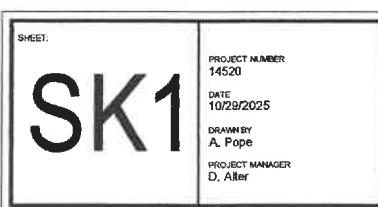

Footing Depth to be: **12 ft** min

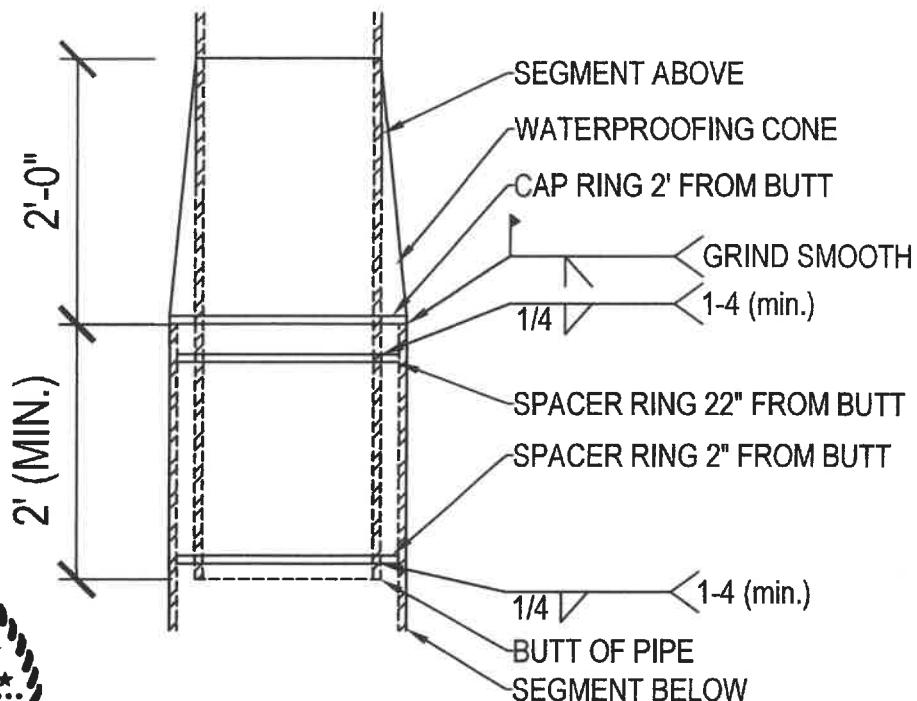
**WARNING: FLAG MUST BE  
REMOVED IF WINDS  
WILL EXCEED 75 MPH**



## FOOTING

FOUNDATION DESIGN IS BASED ON ASSUMED SOIL PROPERTIES. IF THE SOIL ENCOUNTERED IN THE EXCAVATION IS NOT SAND, SILTY SAND, CLAYER SAND, SILTY GRAVEL OR CLAYEY GRAVEL, PLEASE NOTIFY THE ENGINEER. ALSO, IF THE WATER TABLE IS ENCOUNTERED IN THE EXCAVATION, PLEASE CONTACT THE ENGINEER





## ELEVATION

1

## FLAGPOLE

SCALE: N.T.S.





1

## CONNECTION SLEEVE

SCALE: N.T.S.

|                |            |
|----------------|------------|
| SHEET:         | SK2        |
| PROJECT NUMBER | 14520      |
| DATE           | 10/29/2025 |
| DRAWN BY       | A. Pope    |
| REVIEWED BY    | D. Alter   |

PROJECT NAME:  
**Clay Cooley Hyundai Flagpole & Ftg**  
**1540 I-30**  
**Rockwall, TX 75087**

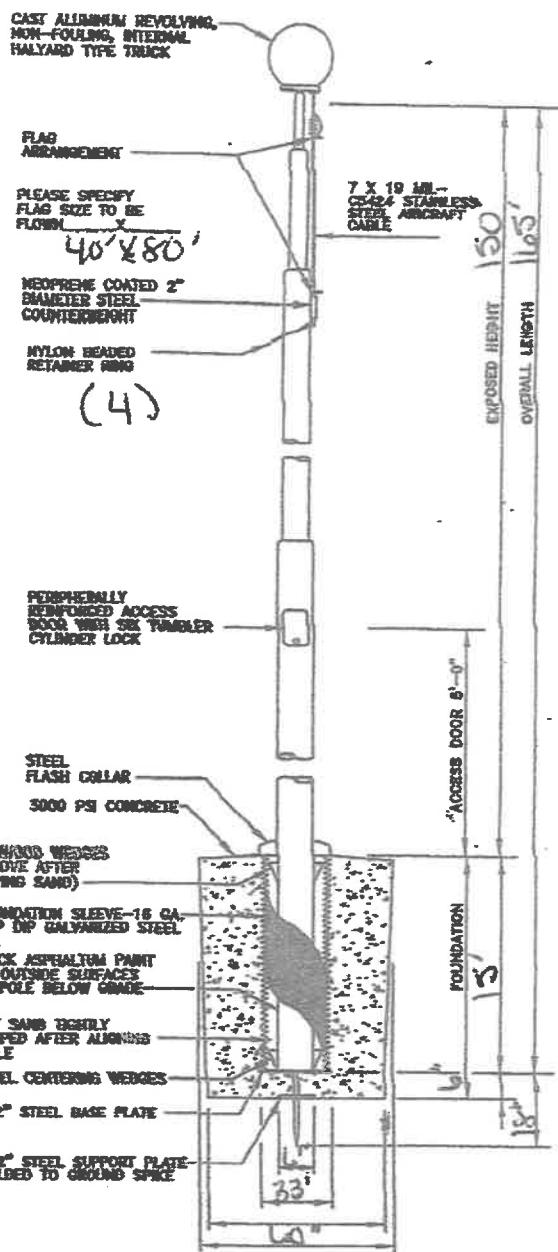
SHEET TITLE:

SALT LAKE CITY  
45 WEST 10000 SOUTH  
Suite 500  
Sandy, UT 84070  
P. 801.255.0529  
F. 801.255.4449

**ENSIGN**  
THE STANDARD IN ENGINEERING  
WWW.ENSIGNUTAH.COM

# DIMINISHING SECTION STEEL CONCEALED HALYARD GROUND SET FLAGPOLE

## STANDARD FITTINGS


**FINAL:** (The flagpole division of NAAMM recommends that no final, other than the internal halyard truck itself be used on the concealed halyard flagpole.)

**TRUCK:** Heavy duty, cast aluminum, internal halyard type, revolving non-fouling, gold powder coated, equipped with upper and lower sealed bearings assemblies and a stainless steel spindle for flagpoles up to 130'. Larger flagpoles will come with two spun steel hemispheres, automotive type sealed bearing assemblies and a welded in steel spindle.

**HALYARD:** Halyard and flag arrangement are 1/8" and 3/16" stainless steel aircraft cable, with attachment ends crimped over 1/8" stainless steel yokes and joined by a stainless steel quicklink. Cable is two piece, joined by a stainless steel swivel at mid-point. The flag arrangement is sized to accommodate an appropriate size flag and is supplied complete with two heavy duty swivel snaps, neoprene coated counterweight, and beaded nylon retainer rings.

**WINCH:** Stainless steel, direct drive, accessible for maintenance only through a reinforced access opening, which is covered by a removable door finished to match flagpole shaft and contains a six tumber cylinder lock. Winch is gearless, operable only by a removable crank handle and locks in any position upon removal of the crank handle.

**FOUNDATION TUBE:** Fabricated from 16GA. galvanized steel, with a steel base plate whose square dimension is 4" larger than the I.D. of the sleeve. A setting plate 6" square is securely welded to the ground spike 6" below the base plate. The ground spike is 3/4" diameter and 36" in length.



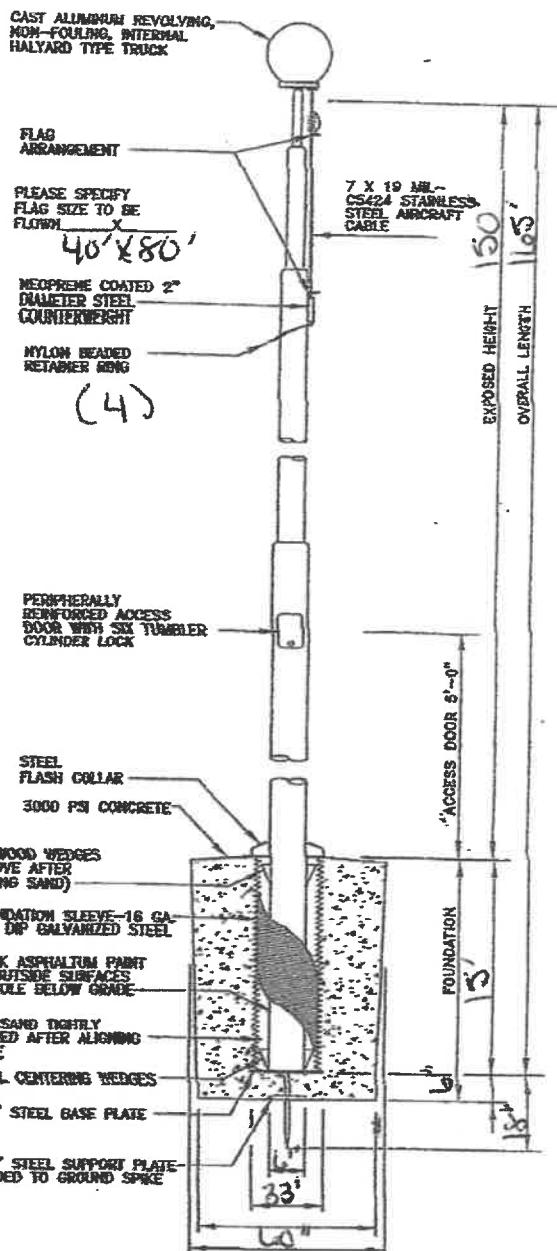
| PROJECT NO.                      |  | GROUND SET DIM. SECTION STEEL FLAGPOLE |                   |                      |  |            |       |
|----------------------------------|--|----------------------------------------|-------------------|----------------------|--|------------|-------|
| LOC. 1540-130                    |  | EXP. HT 150'                           | OVERALL HT 110.5' | NO. OF SEC. 5        |  |            |       |
| ARCHT:                           |  | BUTT. DIA 24"                          | TOP DIA 10 3/4"   | WALL THICKNESS .375" |  |            |       |
| CONT R:                          |  | SHP IN 5 SEC.                          |                   |                      |  |            |       |
| CUST: Clay Cady Hyundai Retailer |  |                                        |                   |                      |  | PAINT COAT | White |

| EXPOSED HEIGHT | OVERALL LENGTH | TOP DIAMETER | BOTTOM DIAMETER | BUTT WALL THICKNESS | SHIP SECTIONS | NO. OF SECTIONS | FLAG SIZE | SHIPPING WEIGHT |
|----------------|----------------|--------------|-----------------|---------------------|---------------|-----------------|-----------|-----------------|
| 150'           | 110.5'         | 10 3/4"      | 24"             | .375"               | 5             | 5               | 40'x80'   | 15,000 lbs      |

**WARNING:** Extreme Caution should be exercised when installing flagpoles near overhead power lines, or in the vicinity of buried cables.

# DIMINISHING SECTION STEEL CONCEALED HALYARD GROUND SET FLAGPOLE

## STANDARD FITTINGS


**FINIAL:** (The flagpole division of NAAMM recommends that no Finial, other than the internal Halyard Truck itself be used on the Concealed Halyard Flagpole.)

**TRUCK:** Heavy duty, cast aluminum, internal halyard type, revolving non-fouling, gold powder coated, equipped with upper and lower sealed bearings assemblies and a stainless steel spindle for flagpoles up to 130'. Larger flagpoles will come with two spun steel hemispheres, automotive type sealed bearing assemblies and a welded in steel spindle.

**HALYARD:** Halyard and flag arrangement are 1/8" and 3/16" stainless steel aircraft cable, with attachment ends crimped over 1/8" stainless steel yokes and joined by a stainless steel quicklink. Cable is two piece, joined by a stainless steel swivel at mid-point. The flag arrangement is sized to accommodate an appropriate size flag and is supplied complete with two heavy duty swivel snops, neoprene coated counterweight, and beaded nylon retainer rings.

**WINCH:** Stainless steel, direct drive, accessible for maintenance only through a reinforced access opening, which is covered by a removable door finished to match flagpole shaft and contains a six tumbler cylinder lock. Winch is gearless, operable only by a removable crank handle and locks in any position upon removal of the crank handle.

**FOUNDATION TUBE:** Fabricated from 16GA. galvanized steel, with a steel base plate whose square dimension is 4" larger than the I.D. of the sleeve. A setting plate 6" square is securely welded to the ground spike 6" below the base plate. The ground spike is 3/4" diameter and 36" in length.



| PROJECT NO.                     | GROUND SET OBL. SECTION STEEL FLAGPOLE |                           |
|---------------------------------|----------------------------------------|---------------------------|
| LOC. 1540-130                   | EXP. HT. 150'                          | OVERALL HT. 165'          |
| ARCHT:                          | BUTT. DIA. 24"                         | TOP DIA. 10 3/4"          |
| CONT R:                         | SHP IN 5 SEC.                          | WALL THICKNESS .375"      |
| CUST: Clay/Cathy Hyundai Robert |                                        | FINISH: Powder Coat White |

| EXPOSED HEIGHT | OVERALL LENGTH | TOP DIAMETER | BOTTOM DIAMETER | BUTT WALL THICKNESS | SHIP SECTIONS | NO. OF SECTIONS | FLAG SIZE | SHIPPING WEIGHT |
|----------------|----------------|--------------|-----------------|---------------------|---------------|-----------------|-----------|-----------------|
| 150'           | 165'           | 10 3/4"      | 24"             | .375"               | 5             | 5               | 40'x80'   | 15,000 lbs      |

**WARNING:** Extreme Caution should be exercised when installing flagpoles near overhead power lines, or in the vicinity of buried cables.

US Flag,  
40'x80'