	T _d							Volume (ft ³)		Volume (acre-ft)
Time Step	duration	K	С	l (in/hr)	A (acres)	Q _{peak} (cfs)	Inflow	Outflow	Required Storage	Previous
	(min)						T _d *Q*60	$0.5*(T_c+T_d)*Q_o*60$	Inflow-Outflow	Column/43,560
1	10	1	0.90	6.10	1.41	7.74	4,645	1,655	2,990	0.069
2	20	1	0.90	4.90	1.41	6.22	7,462	2,482	4,980	0.114
3	30	1	0.90	4.10	1.41	5.20	9,365	3,309	6,056	0.139
4	40	1	0.90	3.40	1.41	4.31	10,355	4,137	6,218	0.143
5	50	1	0.90	2.80	1.41	3.55	10,660	4,964	5,695	0.131
6	60	1	0.90	2.60	1.41	3.30	11,878	5,792	6,086	0.140
7	70	1	0.90	2.40	1.41	3.05	12,792	6,619	6,173	0.142

MAX STORAGE (AC-FT)

0.14 6,218

10 YEAR STORM - DETENTION STORAGE VOLUME

10 YR PO	ND DESIGN	ı			Rainfal	I Intesity, I	(in/hr)		Α	$Q_{\text{peak}} = Q_0$
Step			K	С			T _c (min)	I (in/hr)	(acres)	(cfs)
1	Existing C	Conditions								3.30
2	Proposed	Conditions	1	0.90			10	7.10	1.4	9.01

	T _d								Volume (acre-ft)	
Time Step	duration	K	C	I (in/hr)	A (acres)	Q _{peak} (cfs)	Inflow	Outflow	Required Storage	Previous
	(min)						T_d*Q*60	$0.5*(T_c+T_d)*Q_o*60$	Inflow-Outflow	Column/43,560
1	10	1	0.90	7.10	1.41	9.01	5,406	1,981	3,425	0.079
2	20	1	0.90	5.90	1.41	7.49	8,985	2,971	6,014	0.138
3	30	1	0.90	4.80	1.41	6.09	10,964	3,961	7,003	0.161
4	40	1	0.90	4.00	1.41	5.08	12,182	4,951	7,231	0.166
5	50	1	0.90	3.50	1.41	4.44	13,325	5,942	7,383	0.169
6	60	1	0.90	3.00	1.41	3.81	13,705	6,932	6,773	0.155
7	70	1	0.90	2.80	1.41	3.55	14,923	7,922	7,001	0.161

MAX STORAGE (AC-FT)

0.17 7,383

25 YEAR STORM - DETENTION STORAGE VOLUME

25 YR PO	ND DESIGN				Rainfall	Intesity, I	(in/hr)		А	$Q_{peak} = Q_0$
Step			K	С			T _c (min)	l (in/hr)	(acres)	(cfs)
1	Existing Conditions									3.72
2	Proposed Co	onditions	1	0.90			10	8.30	1.4	10.53

	T _d							Volume (acre-ft)		
Time Step	duration	K	С	l (in/hr)	A (acres)	Q _{peak} (cfs)	Inflow	Outflow	Required Storage Inflow-	Previous
	(min)						T_d*Q*60	$0.5*(T_c+T_d)*Q_o*60$	Outflow	Column/43,560
1	10	1	0.90	8.30	1.41	10.53	6,320	2,233	4,087	0.094
2	20	1	0.90	6.60	1.41	8.38	10,050	3,349	6,701	0.154
3	30	1	0.90	5.50	1.41	6.98	12,563	4,466	8,097	0.186
4	40	1	0.90	4.60	1.41	5.84	14,010	5,582	8,428	0.193
5	50	1	0.90	4.00	1.41	5.08	15,228	6,699	8,529	0.196
6	60	1	0.90	3.50	1.41	4.44	15,989	7,815	8,174	0.188
7	70	1	0.90	3.30	1.41	4.19	17,588	8,932	8,657	0.199

MAX STORAGE (AC-FT)

0.20 8,657

100 YEAR STORM - DETENTION STORAGE VOLUME

											_
100 YR PC	OND DESIGN				Rainfall In	tesity, I (in/ł	nr)		А	$Q_{peak} = Q_0$	
Step			K	С			T _c (min)	l (in/hr)	(acres)	(cfs)	
1	Existing Conditions									4.63	-
2	Proposed C	onditions	1	0.90			10	9.80	1.4	12.44	-

								Volume (acre-ft)		
Time Step	T_d duration (min)	К	С	l (in/hr)	A (acres)	Q _{peak} (cfs)	Inflow T _d *Q*60	Outflow $0.5*(T_c+T_d)*Q_o*60$	Required Storage Inflow-Outflow	Previous Column/43,560
1	10	1	0.90	9.80	1.41	12.44	7,462	2,777	4,685	0.108
2	20	1	0.90	8.30	1.41	10.53	12,639	4,166	8,474	0.195
3	30	1	0.90	6.90	1.41	8.76	15,761	5,554	10,207	0.234
4	40	1	0.90	5.80	1.41	7.36	17,664	6,943	10,722	0.246
5	50	1	0.90	5.00	1.41	6.35	19,035	8,331	10,704	0.246
6	60	1	0.90	4.50	1.41	5.71	20,558	9,720	10,838	0.249
7	70	1	0.90	4.00	1.41	5.08	21,319	11,108	10,211	0.234

MAX STORAGE (AC-FT)

0.25 10,838 **EXISTING CONDITIONS** C_{ex} = UNDEVELOPED RUN-OFF COEFFICIENT = 0.35

120 = 4.9 in/hr A_{ex} = UNDEVELOPED AREA = DRAINAGE AREAS 3-1.0, 3-1.1, 3-1.2, 3-1.3, 3-1.3A, 3-1.4, 3-1.4A, 3-1.5,3-1.6, 3-2.0, & 3-3.0 (SEE DA MAP SHEET C-7)

Cdev = DEVELOPED RUN-OFF COEFFICIENT = 0.90 lio = 6.1 in/hrAdev = DEVELOPED AREA = DRAINAGE AREA 3A (SEE DA MAP SHEET C-7)

 $Q_{5,ex} = C_{ex}*|_{20}*A_{ex} + C_{dev}*|_{10}*A_{dev}$ $Q_{5,ex} = 0.35*4.9*1.32 + 0.90*6.1*0.09$ $Q_{5,ex} = 2.76 \text{ cfs}$

PROPOSED CONDITIONS

Cdev = DEVELOPED RUN-OFF COEFFICIENT = 0.90 lio = 6.1 in/hr

Adev = DEVELOPED AREA = DRAINAGE AREAS 3-1.0, 3-1.1, 3-1.2, 3-1.3, 3-1.3A, 3-1.4, 3-1.4A, 3-1.5, 3-1.6, 3-2.0, 3-3.0, & 3A (SEE DA MAP SHEET C-7)

Q5, ult = $C_{dev}*I_{IO}*A_{dev}$ Q_5 , ult = 0.9*6.1*1.4 Q_5 , ult = 7.74 cfs

EXISTING CONDITIONS

Cex = UNDEVELOPED RUN-OFF COEFFICIENT = 0.35 120 = 5.9 in/hr

 A_{ex} = UNDEVELOPED AREA = DRAINAGE AREAS 3-1.0, 3-1.1, 3-1.2, 3-1.3, 3-1.3A, 3-1.4, 3-1.4A, 3-1.5,3-1.6, 3-2.0, & 3-3.0 (SEE DA MAP SHEET C-7)

Cdev = DEVELOPED RUN-OFF COEFFICIENT = 0.90 lio = 7.1 in/hrAdev = DEVELOPED AREA = DRAINAGE AREA 3A (SEE DA MAP SHEET C-7)

 $Q_{IO,ex} = C_{ex}*|_{20}*A_{ex} + C_{dev}*|_{IO}*A_{dev}$ $Q_{10,ex} = 0.35*5.9*1.32 + 0.90*7.1*0.09$ $Q_{10,ex} = 3.30 \text{ cfs}$

PROPOSED CONDITIONS

Cdev = DEVELOPED RUN-OFF COEFFICIENT = 0.90

lio = 7.1 in/hrAdev = DEVELOPED AREA = DRAINAGE AREAS 3-1.0, 3-1.1, 3-1.2, 3-1.3, 3-1.3A, 3-1.4, 3-1.4A, 3-1.5,

3-1.6, 3-2.0, 3-3.0, & 3A (SEE DA MAP SHEET C-7) Qio, ult = Cdev*Iio*Adev $Q_{10}, ult = 0.9*7.1*1.4$

 $Q_{i0}.ult = 9.01 cfs$

EXISTING CONDITIONS

Cex = UNDEVELOPED RUN-OFF COEFFICIENT = 0.35 120 = 6.6 in/hr

 A_{ex} = UNDEVELOPED AREA = DRAINAGE AREAS 3-1.0, 3-1.1, 3-1.2, 3-1.3, 3-1.3A, 3-1.4, 3-1.4A, 3-1.5,3-1.6, 3-2.0, & 3-3.0 (SEE DA MAP SHEET C-7)

Cdev = DEVELOPED RUN-OFF COEFFICIENT = 0.90 lio = 8.3 in/hrAdev = DEVELOPED AREA = DRAINAGE AREA 3A (SEE DA MAP SHEET C-7)

 $Q_{25,ex} = C_{ex}*|_{20}*A_{ex} + C_{dev}*|_{10}*A_{dev}$ $Q_{25,ex} = 0.35*6.6*1.32 + 0.90*8.3*0.09$ $Q_{25,ex} = 3.72 \text{ cfs}$

PROPOSED CONDITIONS

Cdev = DEVELOPED RUN-OFF COEFFICIENT = 0.90

lio = 8.3 in/hrAdev = DEVELOPED AREA = DRAINAGE AREAS 3-1.0, 3-1.1, 3-1.2, 3-1.3, 3-1.3A, 3-1.4, 3-1.4A, 3-1.5,

3-1.6, 3-2.0, 3-3.0, & 3A (SEE DA MAP SHEET C-7) Q25, ult = Cdev*IIO*Adev

 Q_{25} , ult = 0.9*8.3*1.4 Q_{25} , ult = 10.53 cfs

EXISTING CONDITIONS

Cex = UNDEVELOPED RUN-OFF COEFFICIENT = 0.35

120 = 8.3 in/hr A_{ex} = UNDEVELOPED AREA = DRAINAGE AREAS 3-1.0, 3-1.1, 3-1.2, 3-1.3, 3-1.3A, 3-1.4, 3-1.4A, 3-1.5,3-1.6, 3-2.0, 8 3-3.0 (SEE DA MAP SHEET C-7)

Cdev = DEVELOPED RUN-OFF COEFFICIENT = 0.90 lio = 9.8 in/hrAdev = DEVELOPED AREA = DRAINAGE AREA 3A (SEE DA MAP SHEET C-7)

 $Q_{100,ex} = C_{ex}*|_{20}*A_{ex} + C_{dev}*|_{10}*A_{dev}$ $Q_{100,ex} = 0.35*8.3*1.32 + 0.90*9.8*0.09$ $Q_{100.ex} = 4.63 cfs$

PROPOSED CONDITIONS

Cdev = DEVELOPED RUN-OFF COEFFICIENT = 0.90

lio = 9.8 in/hrAdev = DEVELOPED AREA = DRAINAGE AREAS 3-1.0,

3-1.1, 3-1.2, 3-1.3, 3-1.3A, 3-1.4, 3-1.4A, 3-1.5, 3-1.6, 3-2.0, 3-3.0, & 3A (SEE DA MAP SHEET C-7)

Qioo, ult = $C_{dev}*lio*A_{dev}$ $Q_{100}, ult = 0.9*9.80*1.4$ $Q_{100,ult} = 12.44 \text{ cfs}$

RECORD DRAWING June 9, 2020

To the best of our knowledge Wier & Associates, Inc., states this plan is As-Built. This information provided is based on surveying at the site and information provided by the contractor.

ALL RESPONSIBILITY FOR ADEQUACY OF DESIGN REMAINS WITH THE DESIGN ENGINEER. THE CITY OF ROCKWALL, IN REVIEWING AND RELEASING PLANS FOR CONSTRUCTION, ASSUMES NO RESPONSIBILITY FOR ADEQUACY OR ACCURACY OF DESIGN

CAUTION!!

EXISTING UTILITIES ARE INDICATED ON THE PLANS FROM AVAILABLE INFORMATION. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO VERIFY THE LOCATION OF ALL UTILITIES, TO NOTIFY ALL UTILITY COMPANIES OF THE CONTRACTORS OPERATIONS, TO PROTECT ALL UTILITIES FROM DAMAGE, TO REPAIR ALL UTILITIES DAMAGED DUE TO THE CONTRACTORS OPERATIONS, AND TO NOTIFY THE ENGINEER PROMPTLY OF ALL CONFLICTS OF THE WORK WITH EXISTING UTILITIES.

WA WIER & ASSOCIATES, INC. ENGINEERS SURVEYORS LAND PLANNERS 2201 E. LAMAR BLVD., SUITE 200E ARLINGTON, TEXAS 76006 METRO (817)467-7700

Texas Firm Registration No. F-2776 www.WierAssociates.com

Atlanta Georgia, 30349-2998

Revisions: Mark Date By

3 1<u>2/17/19 RBC</u> ISSUED FOR CONSTRUCTION

Mark Date By

Mark Date By

LOT 2, BLOCK A
LAKESHORE COMMONS
NORTH LAKESHORE I
ROCKWALL, TEXAS

STORE SERIES P13-LSR

SHEET TITLE **DETENTION** POND **VOLUME** REQUIREMENTS

□For Permit □For Bid

■For Construction : 17144 Job No. : **#**03897 Store

: 10/4/2018 Date Drawn By :RRW Checked By: PNA