
<pre> Approx. Duration for Max. Storage/ C adj.factor:1.000 To1666 hrm I = 6.1943 in/hr Q = 5.68 cfs Veighted c = .000 Veig</pre>	DO NOT EXCEED PRE-DEVELOPED FLOWS OS(PRE) - 3.5 CFS OS(ALLOWABLE) - OPRE-DEVPASS - 3.5 - 0.4 3.1 CFS DEVELOPED FLOW TO POND: AREA - 1.01 ACRES C - 0.90 TC 10 MN. MUDIFIED ENTIONS METHOD MUDIFIED ENTIONS METHOD MUDIFIED ENTIONS METHOD MUDIFIED ENTIONS RETURNS PREQUENCY: 5 yr 1 Allowable Outflow: 3.10 cfs 'C' Adjustment: 1.000 1 Negriced Storage: .068 ac-ft 'C' Adjustment: 1.000 1 Negriced Storage: .068 ac-ft 'C' Adjustment: 1.000 1 Negriced Storage		DETENTION POND CALCULATI	ONS	
OSGEYPASS) - 0.4 CFS OSGALLOWABLED - OPPE-OBYPASS - 3.5 - 0.4 3.1CFS DEVELOPED FLOW TO POND: AREA - 1.01 ACRES C - 0.90 TC 10 MN. BODIFIED FATTORN. MCTIOD Graphical Summary for Moximum Required Storage Wethod T 0 - C1A 4 Units Conversion; FRace Conversion = 43560 / (12 + 3600) * EETONS FREQUENCY: 5 yr 1 Allowable Outflow: 3.10 cfs * C' Adjustment: 1.000 TC - 1666 hrm 1 - 6.1932 invita Peak inflow: 3.90 cfs * Area - 1.010 acces * Area - 1.010 acces * Area - 1.010 acces * C' Adjustment: 1.000 TC - 1666 hrm 1 - 6.1932 invita * C' Adjustment: 1.000 * Co - 1666 hrm 1 - 6.1932 invita * C' - 2000 hrs * Area - 1.010 acces * C' Adjustment: 1.000 * Co - 1666 hrm 1 - 6.1932 invita * C' - 2000 hrs * Area - 1.010 acces * C' - 2000 hrs * C - 2000 * C - 1666 hrm 1 - 6.1932 invita * C - 2000 * C - 1000 sc-1. * C - 2000 * C - 2000	DSGNPASS - 0.4 CFS DSGNLOWABLE - OPRE-OBYPASS - 3.5 - 0.4 DEVELOPED FLOW TO POND: AREA - 1.01 ACRES C - 0.80 TO ID MN. MUDIFIED ENTION: METHOD MELNOT T MELNOT TO THE SCHUDENT TO THE SCHUMENT MELNOT TO THE SCHUMENT MELNOT TO THE SCHUMENT MELNOT TO THE SCHUMENT TO - 1666 hrs T - 1.000 ACTS MELNOT TO SCHUE MELNOT TO SCHUE MELNOT TO SCHUE MELNOT TO SCHUE				LOPED FLOWS
DEVELOPED FLOW TO POND: AREA - 1.01 ACRES C - 0.90 TC 10 MMN. MEDIFIED RATIONAL METHOD MEDIFIED RATIONAL METHOD MEDIFIED RATIONAL METHOD MEDIFIED RATIONAL METHOD MEDIFIED RATIONAL METHOD MEDIFIED RATIONAL METHOD MEDIFIED REQUIRED Storage	DEVELOPED FLOW TO POND: AREA - 101 ACRES C - 0.90 TC 10 MMN. BUDIFIED RATIONAL METHOD GRAPHICAL SUBMERY FOR Model Submary for Model from Required Submary		Q5(BYPASS) = 0.4 CFS		31055
AREA - 1.01 ACRES C - 0.90 TC 10 MN. MUDIFIED FATION'L MYTHOD 	AREA - 1.01 ACRES C - 0.90 TC 10 MN. BODDETED EATION'L METHOD Graphical Summery for Max Hum Reprint Elorage Method T 0 ClA 4 Units Conversion: Minor' Conversion = 43860 / (12 * 3600) * BETURN FREQUENCY: 5 yr 1 Allorable Outflow: 3.10 cfs * C Adjustment: 1.000 hequired Elorage668 ec-ft * Pack Inflow: 3.94 cfs 				
<pre> Graphical Summary for Maximum Required Storage Nethod T 0 - ClA * Units Conversion: Nucro Conversion = 43560 / (12 * 3600) ** DESTORS PRECONSTRUCT: 5 yr Allewable Outflow: 3.10 cfs * C' Adjustment 1.000 Required Storage: .068 ac-ft ** Teak Inflow: 3.94 cfs ** Teak Inflow: 5 yr Td = .4500 hrs I = 6.1343 in/hr I = 7.00 hrs I = 7.10 cfs I</pre>	<pre></pre>		C = 0.90		
Q C1A 4 Units Conversion' Rucre'Conversion = 43560 / (12 * 3600) * RETURM FREQUENCY: 5 yr Allowable Outflow: 3.10 cfs * 'C' Adjustment: 1.000 Required Storage: .068 ac-ft * reak inflow: 3.94 cfs Td = .4500 brs Td = .4500 brs Td = .4500 brs To1666 brs I = 6.1943 in/br To1666 brs I = 6.1943 in/br Area = 1.010 acres Weighted C900 Adjustad C900 Adjustad C900 Td68 cfs Area = 1.010 acres Weighted C900 Adjustad C900 	Q - C1A * Units Conversion: Where Conversion = 43360 / (12 * 3600) RETURN FREQUENCY: 5 yr Allowable Outflow: 2.10 efs * C' Adjustment: 1.000 Required Storage: .088 ac-ft Peak inflow: 3.34 efs Pro - 1.666 hrs I - C.1943 turbs To - 1.666 hrs I - C.1943 turbs To - 1.666 hrs I - C.1943 turbs C - 2.66 efs C - 2.68 efs C - 2.68 efs C - 2.68 efs C - 2.900 hrs C - 2.9		Graphical Summary fo	r Maximum Bequir	 ed Storoge
* BETURN FREQUENCY: 5 yr Allowable Outflow: 3.10 cfs * 'C' Adjustment: 1.000 Required Storage: .066 ac-ft * Heat inflow: 3.94 cfs 	<pre>* EFUENE FREQUENCY: 5 yr Xllowable Outflow: 3.10 cfs *C' Adjustment: 1.000 Required Storage: .066 ac-ft * Peak Inflow: 3.94 cfs ************************************</pre>	Q ··	Cin * Units Conversion; W		= 43560 / (12 * 3600)
<pre></pre>	Td = .4500 hrs Peak Lollow: 3.94 nfm Peak Lollow: 3.94 nfm Td = .4500 hrs Td = .4500 hrs To1666 hm T = 6.1943 hu/hr Approx. Duration for Max. Storage	* RE	TURN FREQUENCY: 5 yr 👘		
* HTG FILE: 5 YR Td = .4500 hrs Approx. Duration for Max. Storage Approx. Duration for Max. Storage To1666 hrs I = 6.1999 hu/hr Q = 5.68 cfs Heighted C = .500 Adjusted C = .500 Adjusted C = .500 Adjusted C = .500 Adjusted C = .500 To1068 sc-11. To42.294 hu/hr A = 4.294 h	Td = .4500 hrs Td = .4500 hrs Approx. Duration for Max. Storage	*		Required Stora 	ye:.068 ac−ft; * *
<pre> Approx. Duration for Max. Storage/ C adj.factor:1.000 To1666 hrm I = 6.1943 in/hr Q = 5.68 cfs Veighted c = .000 Veig</pre>	Approx. Duration for Max. Storage/ C adj.factor:1.000 To- 1.666 hrs I - 6.1943 in/hr Q - 5.68 cfs Heighted C900 Adjusted C900 Adjusted C900 Adjusted C900 To1000 ec-11 To4500 hrs T - 4.2994 in/hr A x x x x x x x x x x x x x x x x x x x	* . BY	G File: 5 YR	***	* • * * *******
<pre> Approx. Duration for Max. Storage/ C adj.factor:1.000 To1666 hrm I = 6.1943 in/hr Q = 5.68 cfs Veighted c = .000 Veig</pre>	Approx. Duration for Max. Storage/ C adj.factor:1.000 To- 1.666 hrs I - 6.1943 in/hr Q - 5.68 cfs Heighted C900 Adjusted C900 Adjusted C900 Adjusted C900 To1000 ec-11 To4500 hrs T - 4.2994 in/hr A x x x x x x x x x x x x x x x x x x x				
I - 6.1943 iu/hr Q - 5.68 cfs Heighted C - 900 Adjusted C - 900 Adjusted C - 900 Tdm - 4500 hrs I - 4.2994 in/hr T - 4.2994 in/hr	I - 6.1943 in/hr Q - 5.68 cfs Heighted C - 900 Adjusted C - 900 Adjusted C - 900 Adjusted C - 900 Adjusted C - 900 Tdm .4500 hrs I - 4.2994 Julic A A A A A A A A A A A A A A A A A A A	 / !			
. Q = 5.68 cfs 	Q = 5.68 cfs $Q = 5.68 cfs$ $Regnance C = .000$ $Regnance C = .0000$ $Regnance C = .0000$ $Regn$	 } 			 { Area - 1.010 acres
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{1000 \text{ exc} -11} \int_{1}^{10} \text{Tur}_{-1} (300 \text{ hrs}) \int_{1}^{10} \text{Tur}_{-1} $	i	Q = 5.68 cfs		∣ 10eighted C – .900
<pre>1 1 = 4.2894 in/hr x x x x x x x x x x x x x x x x x x x</pre>	I = 4.2994 in/lic x = x = x = x = x = x = x = x = x = x =				
x o (j = 3.10 cfs x (Allow.Outflow) x o (j = 3.10 cfs x (Allow.Outflow) x o NOT TO SCALE x o NOT TO SCALE x o	x o () = 3.10 cfs x (Allow.Outflow) x o () = 3.10 cfs (Allow.Outflow) x o () = 3.10 cfs x (Allow.Outflow) x o () = 3.10 cfs x (Allow.Outflow) x (Allow.Outflow) x (Allow.Outflow) x (Allow.Outflow) y (Allow.Outflo		- I , I ^L		τ = 4.2994 in/hr
x o x (Allow.Outflow) x o NOT TO SCALE A 0 . x o NOT TO SCALE A . 4855 hrs T . LEVEL FOOL ROUTING SUMMARY UYS Dir - C:\Users\Neith\Documents\ Inflow HYC file - work pad.byg - POND 10 IN 5 YR Outflow HYC file = work pad.byg - POND 10 OUT 5 YR Pond Note Data = FOND 10 Pond Volume Data = FOND 10 . Pond Outlet Data - Outlet 1 . No Infiltration . TWITIAL CONDITIONS 	x 0 x (Allew.Outflow) x 0 x (Allew.Outflow] x 0 x x x x x x x x x x x x x	l ſ	· · · ·		я
x o NOT TO SCALE x 0 x x 0 x 4855 hrs T HYG Dir C:\Oscrs\Keilb\Documents\ Inflow HYC file = work pad.byg = POND 10 IN 5 YR Outflow HYG file = work pad.byg = POND 10 Outflow HYG file = work pad.hyg = POND 10 Pond Note Data = POND 10 Pond Volume Data = POND 10 Pond Outlet Data = Outlet 1 No Infiltration THAT HAL CONDITIONS Starting WS Elev = 553.00 ft Starting WS Elev = 00D ac-ft Starting US Elev = 00D ac-ft Starting US Elev = 00D cfs Starting Tofiltr = .00 cfs Starting Tofiltr = .000 cfs Starting Tofiltr = .0000 hrs Poak Inflow = <u>3.94 cfs</u> at .2000 hrs Poak Outflow = <u>2.73 cfs</u> at .5000 hrs	x o NOT TO SCALE x 0 x x 4855 hrs T HYA Dir C:\UScrs\Keith\Documents\ Inflow HYC file = work pad.byg = POND 10 IN 5 YR Outflow HYG file = work pad.byg = POND 10 OUT 5 YR Pond Worke Data = FOND 10 Pond Volume Data = FOND 10 Pond Volume Data = FOND 10 Pond Volume Data = COND 10 Starting VS Elev = 553.00 ft Starting Volume = .00D ac-ft Starting Volume = .00D cfs Starting Thiltr. = .00	l ,		•	
4855 hrs T LEVEL FOOL ROUTING SUWWARY UYG Dir - C:\Users\Keilb\Documents\ Inflow HYC file = work pad.byg = POND 10 IN 5 YR Outflow HYG file = work pad.byg = POND 10 OUT 5 YR Pond Node Data = FOND 10 Pond Volume Data = FOND 10 OUT 5 YR Pond Volume Data = FOND 10 Pond OUT 5 YR Pond Outlet Data = Outlet 1 No Infiltration TWITIAL CONDITIONS	.4855 hrs T LEVEL FOOL KOUTING SUMMARY UVA bir - C:\Users\Neilh\Documents\ Inflow HYC file = work pad.byg = POND 10 IN 5 VR Outflow HYG file = work pad.byg = POND 10 OUT 5 VR Outflow HYG file = work pad.byg = POND 10 OUT 5 VR Pond Wode Data = FOND 10 Pond Volume Data = POND 10 Pond OUT 5 VR Pond Outlet Data = Outlet 1 No Infiltration TWTTIAL CONDITIONS		х о,		л
LEVEL FOOL ROUTING SUMMARY NYA Dir - C:\Users\Neilb\Documents\ Inflow HYC file - work pad.byg - POND 10 IN 5 YR Outflow HYG file = work pad.byg - PDND 10 OUT 5 YR Pond Node Data = FOND 10 Pend Volume Data = DOND 10 Pend Volume Data = DOND 10 Pond Outlet Data = DOND 10 Pend Volume Data = Outlet 1 No Infiltration THTTIAL CONDITIONS Starting VS Elev = 553.00 ft Starting Volume = .000 ac-ft Starting Volume = .000 cfs Starting Tofiltr. = .00 cfs Starting Tofiltr. = .00 cfs Starting Tofiltr. = .000 cfs NMILUM/DUTFLOW ATURGERAPH SUMMARY	LEVEL POOL KOUTING SUMMARY NYG Dir - C:\Users\Keilh\Documents\ Inflow HYC file = work pad.byg = POND 10 IN 5 YR Outflow HYC file = work pad.byg = POND 10 OUT 5 YR Pond Node Data = FOND 10 Pond Outlet Data = Outlet 1 No Infiltration TWTTIAL CONDITIONS Starting NS Elev = 553.00 ft Starting Volume = 00D uc-ft Starting Untilow = 00D cfs Starting Tofal gout- 00 cfs Starting Total Qout- 00 cfs Time Increment = 0500 hrs Peak Inflow = <u>3.96 cfs</u> at 2000 hrs Peak Outflow = <u>2.73 cfs</u> at 5000 hrs Peak Elevation = 555.69 ft Peak Storage -	! ° 	·		İ
WYG Dir - C:\Users\Neith\Documents\ Inflow HYG file = work pad.byg - POND 10 IN 5 YR Outflow HYG file = work pad.byg - POND 10 Pond Node Data = FOND 10 OUT 5 YR Pond Node Data = FOND 10 Pond OUT 5 YR Pond Volume Data = POND 10 Pond Outlet Data = Outlet 1 No Infiltration TWTTIAL CONDITIONS Starting NS Elev = 553.00 ft Starting Volume = .000 do-ft Starting Volume = .000 do-ft Starting Tufiltr. = .00 cfs Starting Tufiltr. = .00 cfs Starting Tufiltr. = .00 cfs Starting Tufiltr. = .000 cfs Time Increment = .0500 brs INMULW/CNITELOW HYDROGRAPH SUMWARY	NYG Div - C:\Uscrs\Neilh\Documents\ Inflow HYC file = work pad.byg - POND 10 IN 5 YR Outflow HYC file = work pad.byg - POND 10 OUT 5 YR Pond Note Data = FOND 10 Pond Volume Data = POND 10 Pond Outlet Data = Outlet 1 No Infiltration TWTTIAL CONDITIONS Starting NS Elev = 553,00 ft Starting Volume = .00D ac-ft Starting Volume = .00D cfs Starting Total Qout00 cfs Starting Total Qout00 cfs Infiltration INFIQU/ONTFLOW HYDROGRAPH SUMWARY Peak Inflow = 3.96 cfs at .2000 hrs Peak Qutflow = .055.69 ft .052 dc-ft				.4835 hrs T
Inflow HYC file - work pad.byg - POND 10 IN 5 VR Outflow HYG file = work_pad.byg - POND 10 OUT 5 YR Pond Node Data = FOND 10 Pond Volume Data = POND 10 Pond Outlet Data = Outlet 1 No Infiltration TWTTIAL CONDITIONS Starting WS Elev = 553.00 ft Starting Volume = .00D ac-ft Starting Outlew = .00D ac-ft Starting Outlew = .00 cfs Starting Total Qout00 cfs Vime Increment = .0500 hrs Vime Increment = .0500 hrs Peak Inflow = <u>3.94 cfs</u> at .2000 hrs Poak Outflow = <u>2.73 cfs</u> at .5000 hrs	Inflow HYC file - work pad.byg - POND 10 IN 5 VR Outflow HYG file = work pad.byg - POND 10 OUT 5 YR Pond Note Data = POND 10 Pond Volume Data = POND 10 Pond Outlet Data - Outlet 1 No Infiltration THAT TAL CONDITIONS Starting WS Elev = 553.00 ft Starting Volume = .00D ac-ft Starting Outflow = .00D cfs Starting Tofiltr. = .00 cfs Starting Tofal Gout00 offs Time Increment = .0500 hrs Peak Inflow = <u>3.99 cfs</u> at .2000 hrs Peak Contflow = .055.69 ft .052 ac-ft			POOL ROUTING SU	随被按长入
Pond Node Data = FOND 10 Pond Volume Data = DOND 10 Pond Outlet Data = Outlet 1 Wo Infiltration TWITIAL CONDITIONS Starting WS Elev = 553.00 ft Starting Volume = .00D ac-ft Starting Volume = .00D cfs Starting Tofiltr. = .00 cfs Starting Tofal Qout	Pond Node Data = FOND 10 Pond Volume Data = POND 10 Pond Outlet Data = Outlet 1 No Infiltration TWTTIAL CONDITIONS Starting VS Elev = 553.00 ft Starting Volume = .00D ac-ft Starting Volume = .00D cfs Starting Tufiltr. = .00 cfs Starting Tufiltr. = .00 cfs Starting Total Qout00 cfs Time Increment = .0500 hrs Peak Inflow = <u>3.94 cfs</u> at .2000 hrs Peak Inflow = <u>3.94 cfs</u> at .2000 hrs Peak Outflow = <u>555.89 ft</u> .052 ac-ft		Inflow HYC file - work	pad.byg - POMD 1	.0 IN 5 YR
Pond Volume Data = POND 10 Pond Outlet Data = Outlet 1 No Infiltration THETTIAL CONDITIONS Starting WS Elev = 553.00 ft Starting Volume = .00D ac-ft Starting Outflow = .00D cfs Starting Infiltr. = .00 cfs Starting Total Qout00 cfs Vime Increment = .0500 hrs Vime Increment = .0500 hrs Peak Inflow = <u>3.94 cfs</u> at .2000 hrs Peak Outflow = <u>2.73 cfs</u> at .5000 hrs	Pond Volume Data = POND 10 Pond Outlet Data = Outlet 1 No Infiltration THETTIAL CONDITIONS Starting WS Elev = 553.00 ft Starting Volume = .000 ac-ft Starting Volume = .000 cfs Starting Tofiltr. = .00 cfs Starting Tofal Qout00 cfs Vime Increment = .0500 hrs Vime Increment = .0500 hrs Peak Inflow = <u>3.96 cfs</u> at .2000 hrs Peak Inflow = <u>2.73 cfs</u> at .5DD0 hrs Peak Elevation = <u>555.89 ft</u> .052 au-ft		· ·.	•	
TWITIAL CONDITIONS Starting WS Elev = 553.00 ft Starting Volume = .00D ac-ft Starting Outflow = .00 cfs Starting Infiltr. = .00 cfs Starting Total Qout00 cfs Time Increment = .0500 hrs Vine Increment = .0500 hrs Peak Inflow = <u>3.96 cfs</u> at .2000 hrs Poak Outflow = <u>2.73 cfs</u> at .5000 hrs	TWTTIAL CONDUCTIONS Starting WS Elev = 553,00 ft Starting Volume = .00D ac-ft Starting Outflow = .00 cfs Starting Tofiltr. = .00 cfs Starting Tofiltr. = .00 cfs Starting Tofal Qout00 cfs Time Increment = .0500 hrs Peak Inflow = 3.96 cfs at .2000 hrs Peak Outflow = 2.73 cfs at .5000 hrs Peak Elevation = 555.69 ft Peak Storage		Pond Volume Data = POND	10	
Starting WS Elev = 553.00 ft Starting Volume = .00D ac-ft Starting Outflow = .00 cfs Starting Total Qout00 cfs Vime Increment = .0500 hrs Vime Increment = .0500 hrs Peak Inflow = <u>3.96 cfs</u> at .2000 hrs Peak Outflow = <u>2.73 cfs</u> at .5000 hrs	Starting WS Elev = 553.00 ft Starting Volume = .00D ac-ft Starting Outflow = .00 cfs Starting Tofiltr = .00 cfs Starting Tofiltr = .00 cfs Starting Total Qout- .00 cfs Time Intrement = .0500 hrs Peak Inflow = 3.90 cfs at .2000 hrs Peak Optflow = 2.73 cfs at .5000 hrs Peak Elevation = 555.69 ft .052 ac-ft		. No Infiltration		
Starting WS Elev = 553.00 ft Starting Volume = .00D ac-ft Starting Outflow = .00 cfs Starting Total Qout00 cfs Vime Increment = .0500 hrs Vime Increment = .0500 hrs Peak Inflow = <u>3.96 cfs</u> at .2000 hrs Peak Outflow = <u>2.73 cfs</u> at .5000 hrs	Starting WS Elev = 553.00 ft Starting Volume = .00D ac-ft Starting Outflow = .00 cfs Starting Tofiltr = .00 cfs Starting Total Qout00 cfs Time Increment = .0500 hrs VMAJW/CMITFLOW HYDROGRAPH SUMMARY Peak Inflow = <u>3.94 cfs</u> at .2000 hrs Peak Outflow = <u>2.73 cfs</u> at .5000 hrs Peak Elevation = <u>555.69 ft</u> .052 ac-ft				
Starting Outflow00 cfs Starting Infiltr. = .00 cfs Starting Total Oout00 cfs Time Increment = .0500 hrs INFLOW/CMITFLOW HYDROGRAPH SUMMARY Example	Starting Outflow - .00 cfs Starting Infiltr. = .00 cfs Starting Total Qout .00 cfs Time Increment = .0500 hrs INFLOW/CMITELOW HYDROGRAPH SUMMARY Peak Inflow = 3.96 cfs at .2000 hrs Peak Outflow = 2.73 cfs at 5000 hrs Peak Elevation = 555.69 ft .052 ac-ft		Starting WS Elev = 5		
Wime Intrement = .0500 hrs /NMAJW/CMITFLOW HYDROGRAPH SUMMARY ====================================	<pre>""""""""""""""""""""""""""""""""""""</pre>		Starting Outflow 🧁	.0D cfa	
Peak Inflow = <u>3.90 cfs</u> at .2000 hrs Peak Optflow = <u>2.73 cfs</u> at .5000 hrs	Peak Inflow = 3.96 cfs at .2000 brs Poak Outflow = 2.73 cfs at .5000 brs Peak Elevation = 555.69 ft Poak Storage052 ac-ft				
Peak Inflow = <u>3.90 cfs</u> at .2000 hrs Peak Optflow = <u>2.73 cfs</u> at .5000 hrs	Peak Inflow = 3.96 cfs at .2000 brs Poak Outflow = 2.73 cfs at .5000 brs Peak Elevation = 555.69 ft Poak Storage052 ac-ft		t kula tan ƙasar a sa ta ƙalarse ƙwa	ארד מנוזאנות נו	
Peak Optflow = 2.73 crs at .5000 hrs	Poak Optflow= 2.73 cfs at5000 hrsPeak Elevation= 555.69 ft Poak Storage $.052 \text{ ac-ft}$		=======================================		
	Poak Stowage - 1052 av-fil		Peak Outflow =	2.73 crs at	
Poak Stowage052 av-fil			Poak Storage -	.052 arc−£1	
			=======================================		

As Builts 7/13.17

DNS THAT POST-DEVELOPED FLOWS OPED FLOWS YPASS = 4.7 - 0.5 = 4.2 CFS D RATIONAL METHOD for Maximum Required Storage Method T			CIVIL & ENVIRONMENTAL ENGINEERS – PLANNERS – CONSTRUCTION MANAGERS 8241 MID-CITIES BLVD. – NORTH RICHLAND HILLS, TEXAS 76180–4712 PHONE (817) 268–0408 FAX (817) 284–8408
Where Conversion = 43500 / (12 * 3600) Allowable Outflow: 4.20 cfs * Allowable Outflow: 4.20 cfs * Allowable Outflow: 4.20 cfs * Required Storage: .033 au-fl * * * * * * * * * * * * * *	SITE CONSTRUCTION PLANS	CARMEL CAR WASH 2003 SOUTH GOLIAD STREET CITY OF ROCKWALL, TEXAS	DETENTION POND CALCULATIONS
D 10 D 10 Det 1 553.00 ft .000 ac-rt .00 cfs .00 cf	048-019 A S - BUILT DRAW INGS	THIS DOES NOT IMPLY A GROUND SURVEY. K.M.H. THESE ODCUNENTS WERE PREPARED FROM DRIGINAL DESIGN ORAMINGS AND CONSTRUCTION J.B.E. MODIFICATIONS.NOTED BY CONTRACTOR. KEITH M LALUI TON	
	ND. REVISION BY DATE JOB 048- TITION DATE JOB 048- DATE 7/13/	DRAWN	CHECKED TEXAS TEXAS TECAS NO. F-00526 NO. F-00526