
DEVELOPMENT PLANS

FOR

BREEZY HILL PHASE V

CITY OF ROCKWALL, TEXAS

PREPARED FOR

BH PHASE III SF, LTD.

8214 WESTCHESTER DRIVE, SUITE 710 DALLAS, TEXAS 75225

CORWIN ENGINEERING, INC. — CONSULTING ENGINEERS

200 W. BELMONT, SUITE E

TBPE FIRM #5951

ALLEN, TEXAS 75013

1 TITLE

2 PLAT

KETTON DRIVE

HEATHER FALLS DRIVE

LAZY BROOKE DRIVE STA. 0+00 TO 10+00

6 LAZY BROOKE DRIVE 10+00 TO END

7 LORION DRIVE

8 RAVENBANK DRIVE

9 WATER AND SANITARY SEWER PLAN

SANITARY SEWER PROFILES

11 SANITARY SEWER PROFILES

12 EXISTING CONDITIONS DRAINAGE AREA MAP

13 PROPOSED DRAINAGE AREA MAP

13A PROPOSED DRAINAGE AREA MAP

4 DRAINAGE CALCULATIONS

STORM SEWER PLAN AND PROFILE LINES 'D-1' & 'D-2'

16 STORM SEWER PLAN AND PROFILE LINES 'D-3' & 'D-4'

17 STORM SEWER PLAN AND PROFILE LINE 'D-5'

18 STORM SEWER PLAN AND PROFILE LINES 'D-6' & 'D-7'

19 STORM SEWER PLAN AND PROFILE LINES 'D-8' & 'D-9'

O STORM SEWER LATERAL PROFILES

21 DETENTION POND PLAN - POND 1

22 DETENTION POND PLAN - POND 2

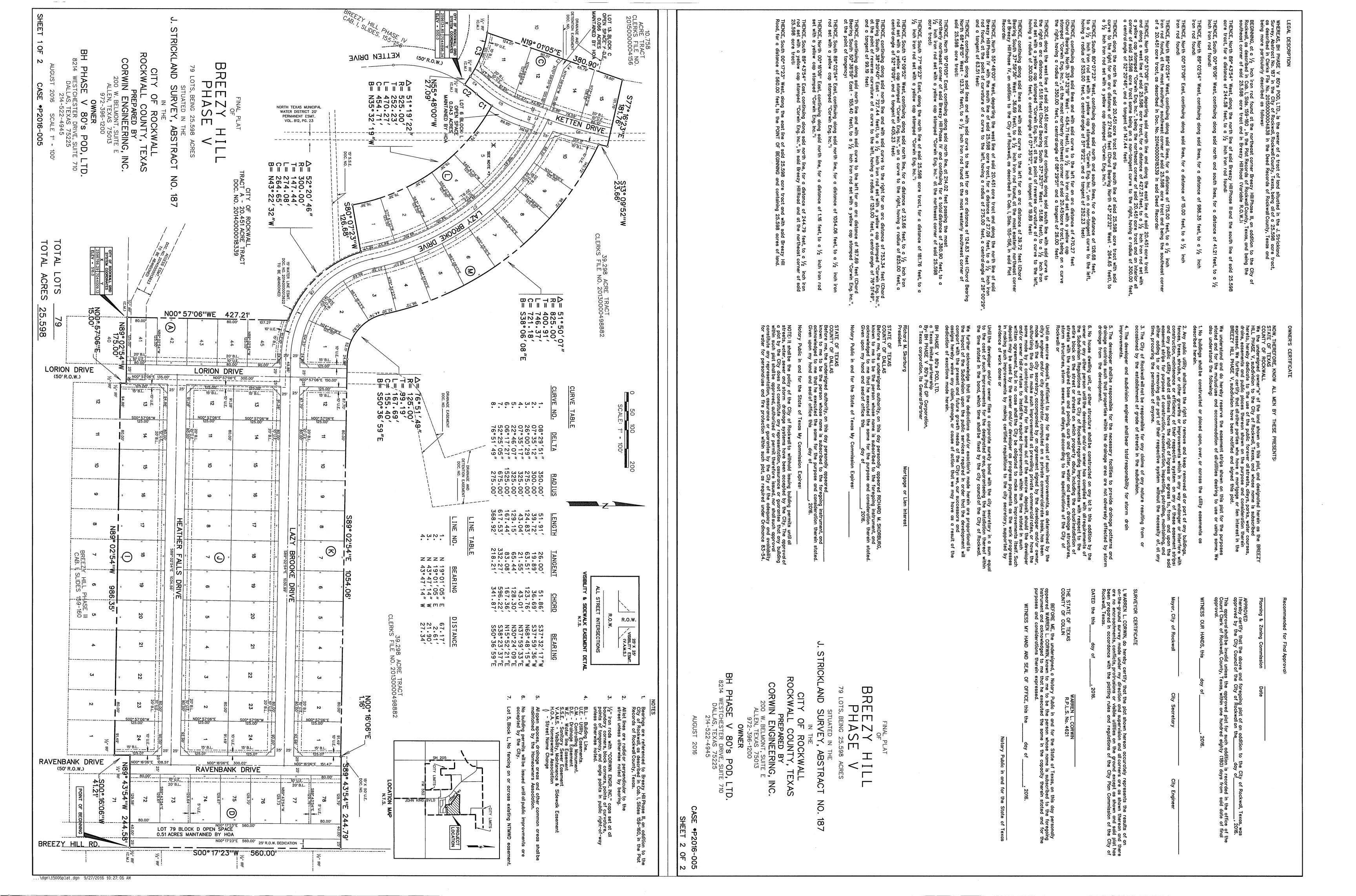
23 GRADING PLAN

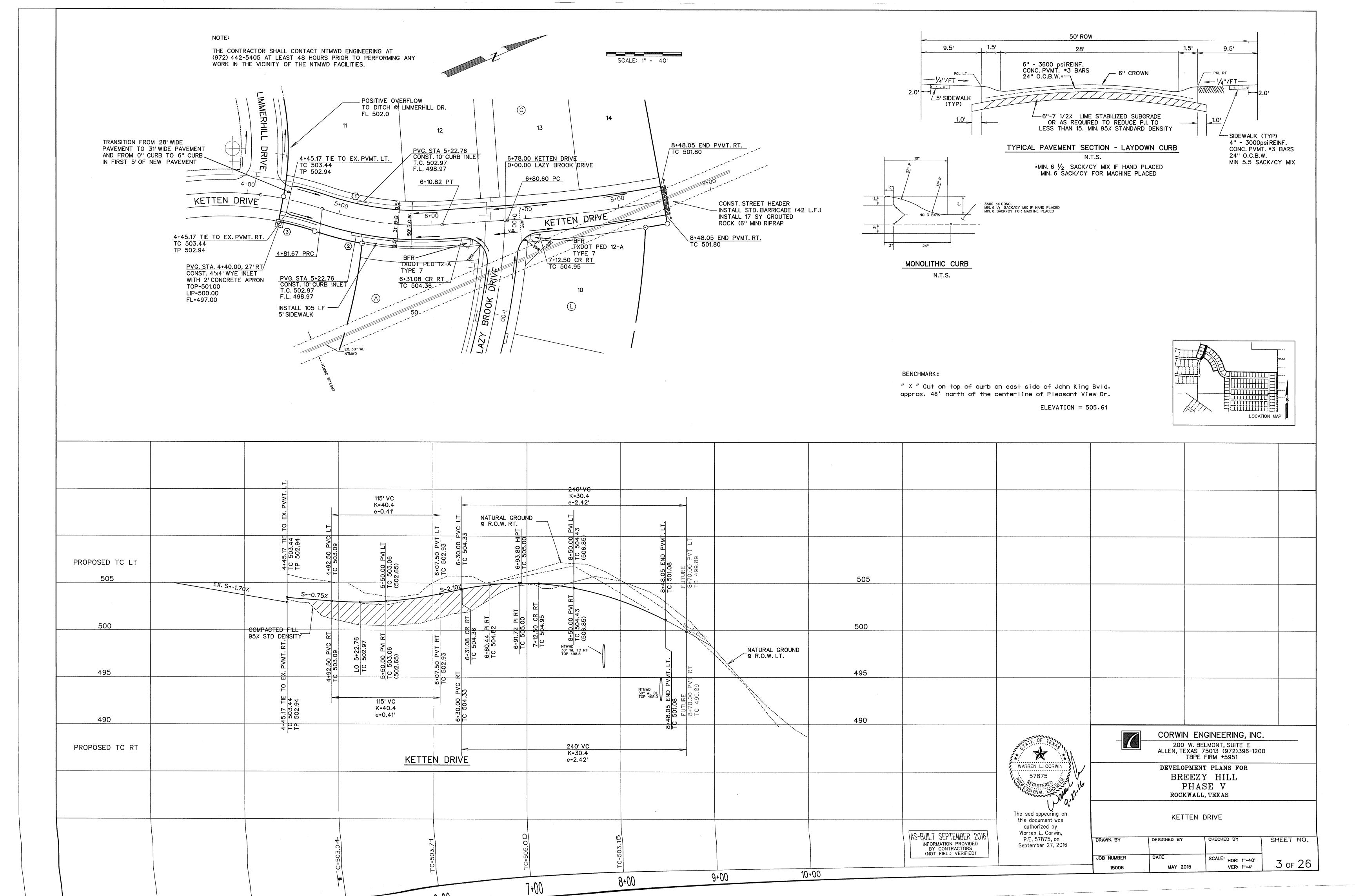
24 GRADING PLAN

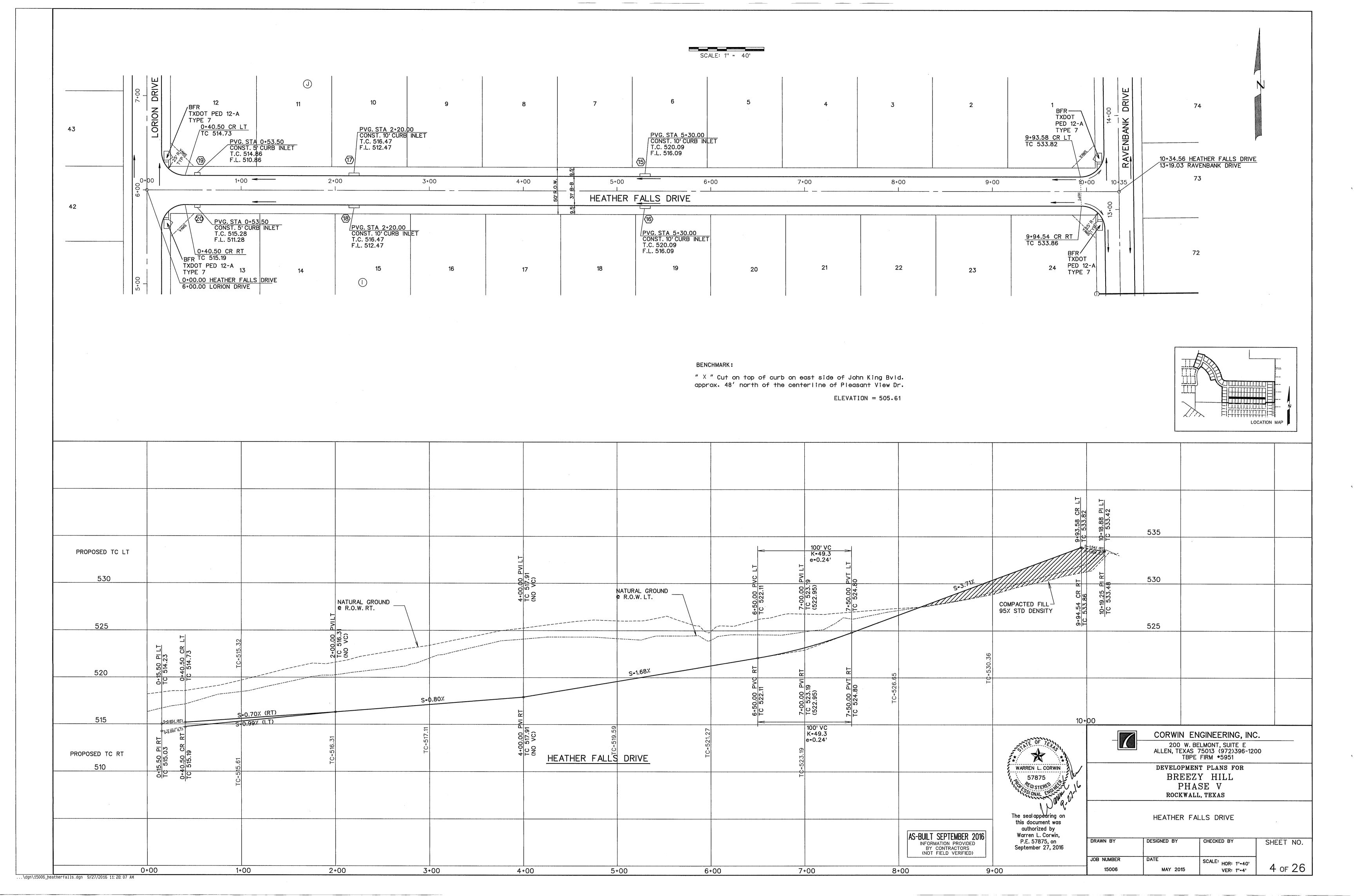
EROSION CONTROL PLAN

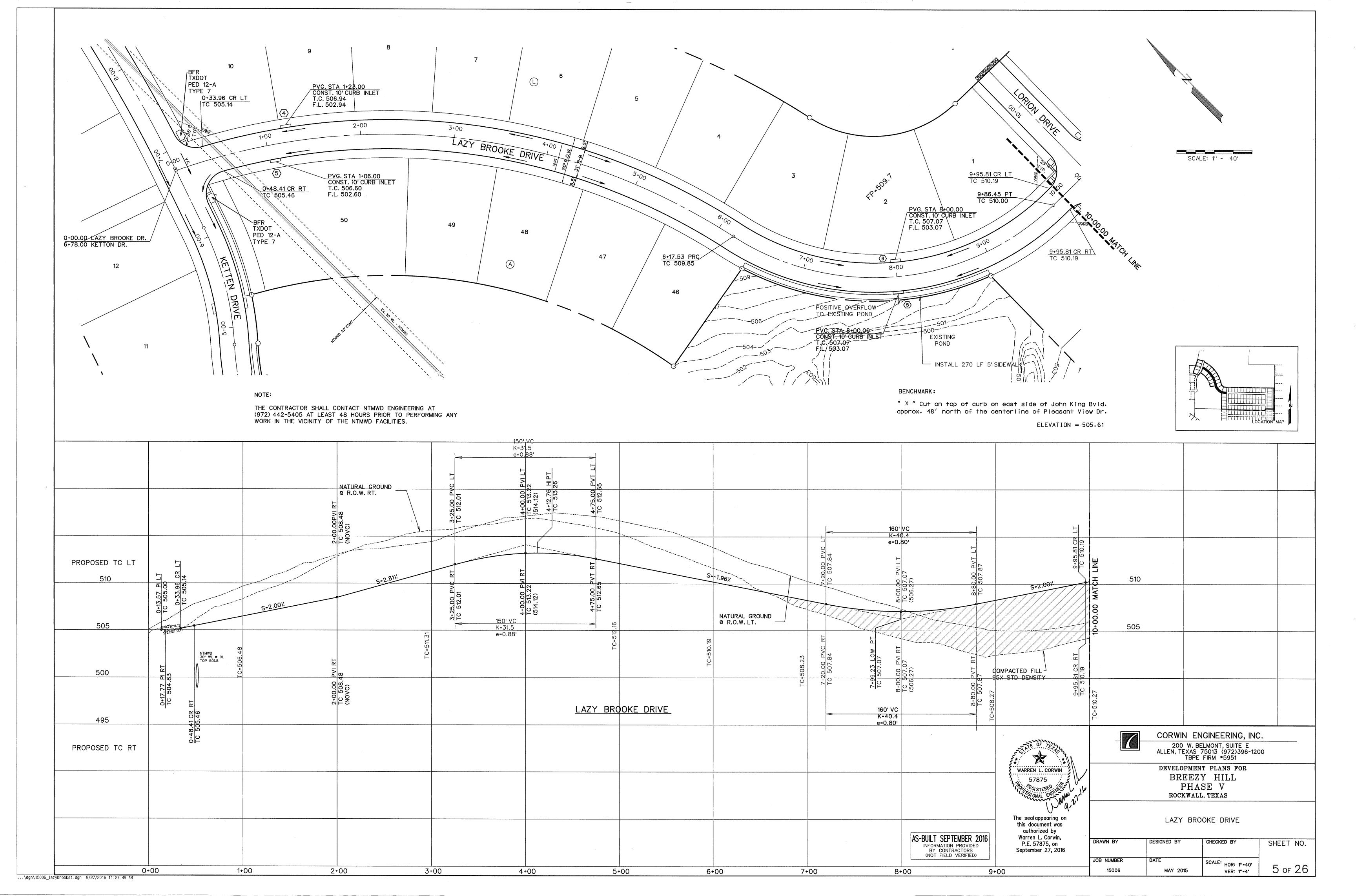
26 STREET SIGN PLAN

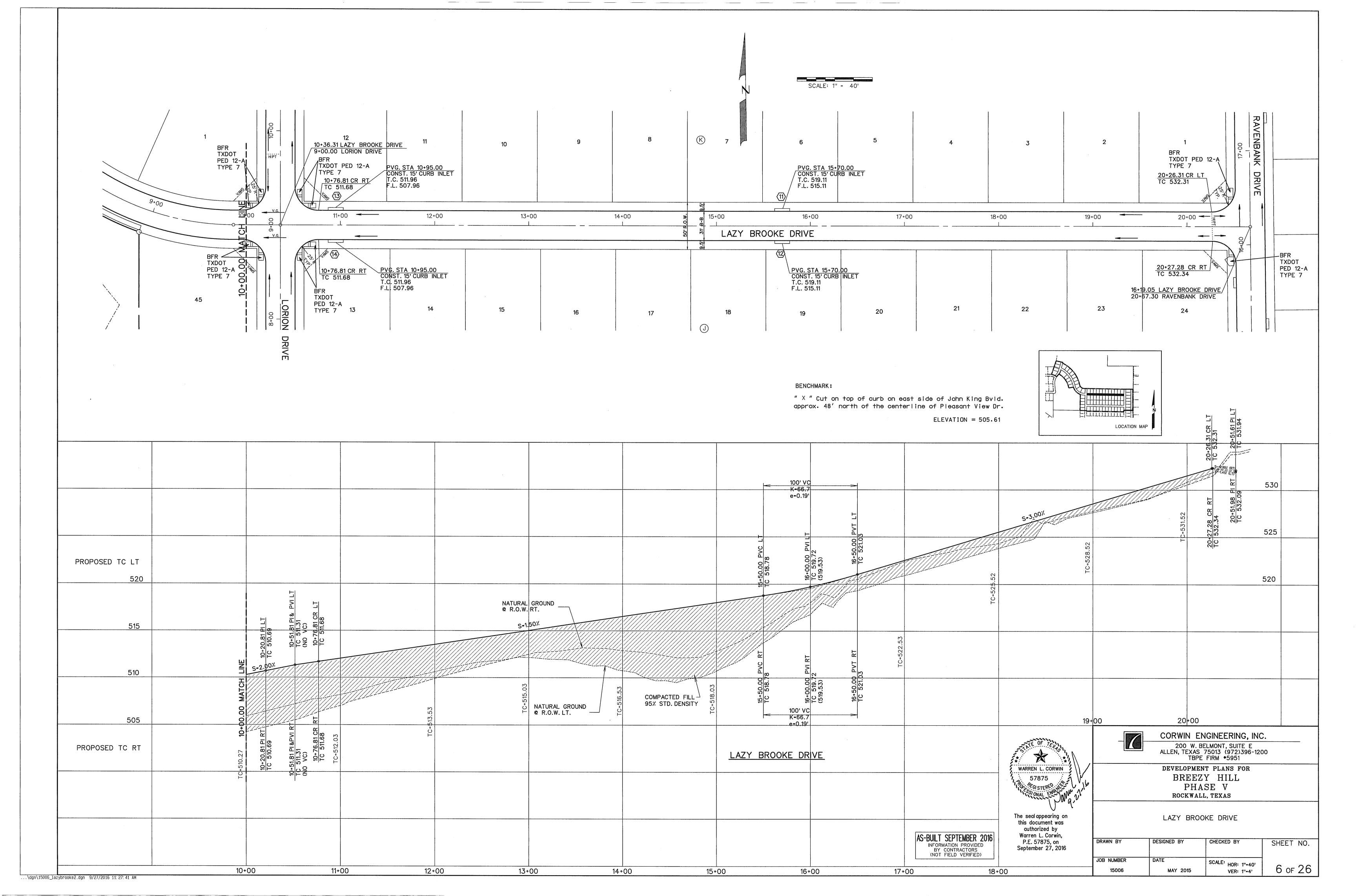
AS-BUILT SEPTEMBER 2016

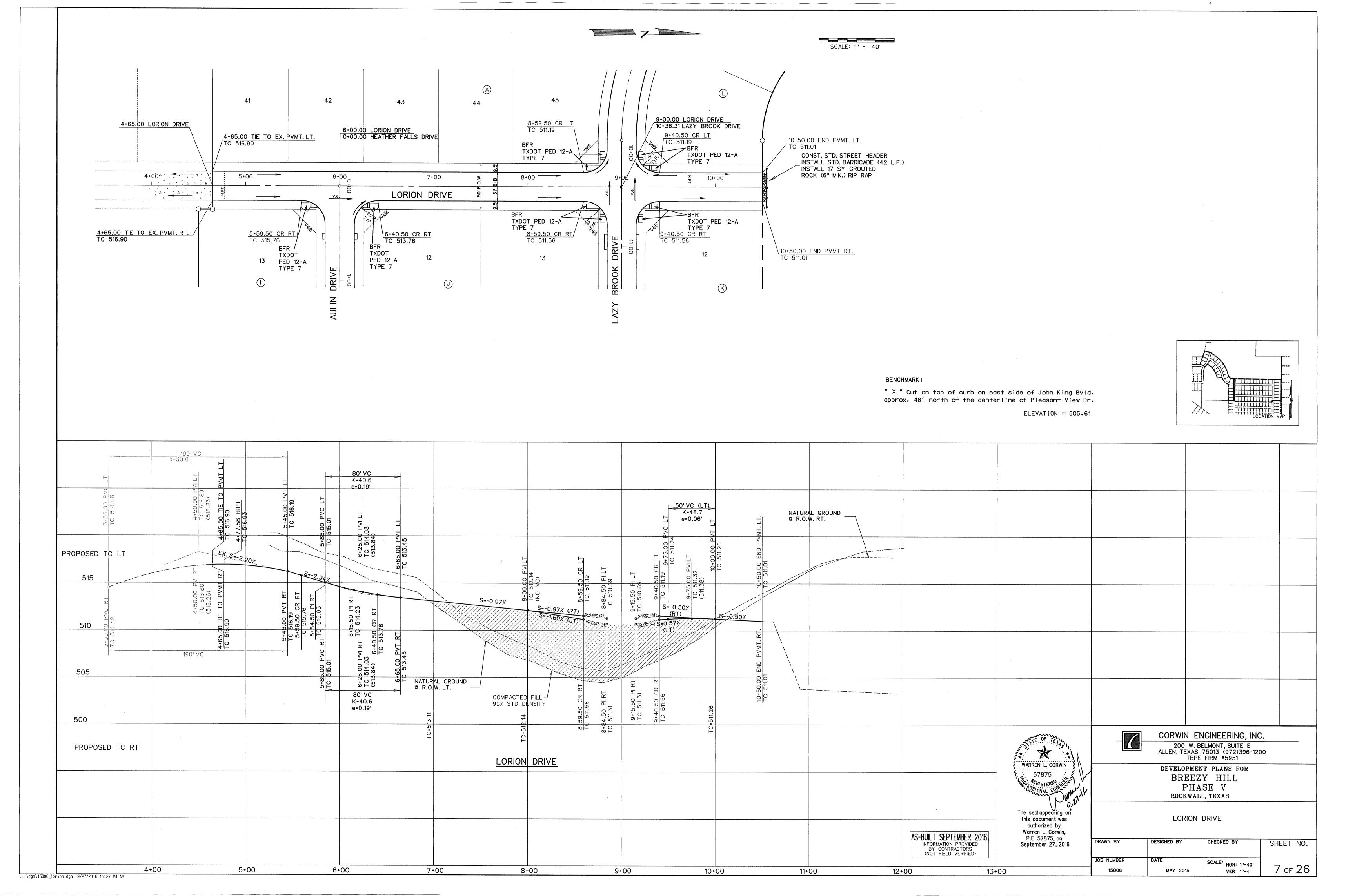

INFORMATION PROVIDED
BY CONTRACTORS
(NOT FIELD VERIFIED)

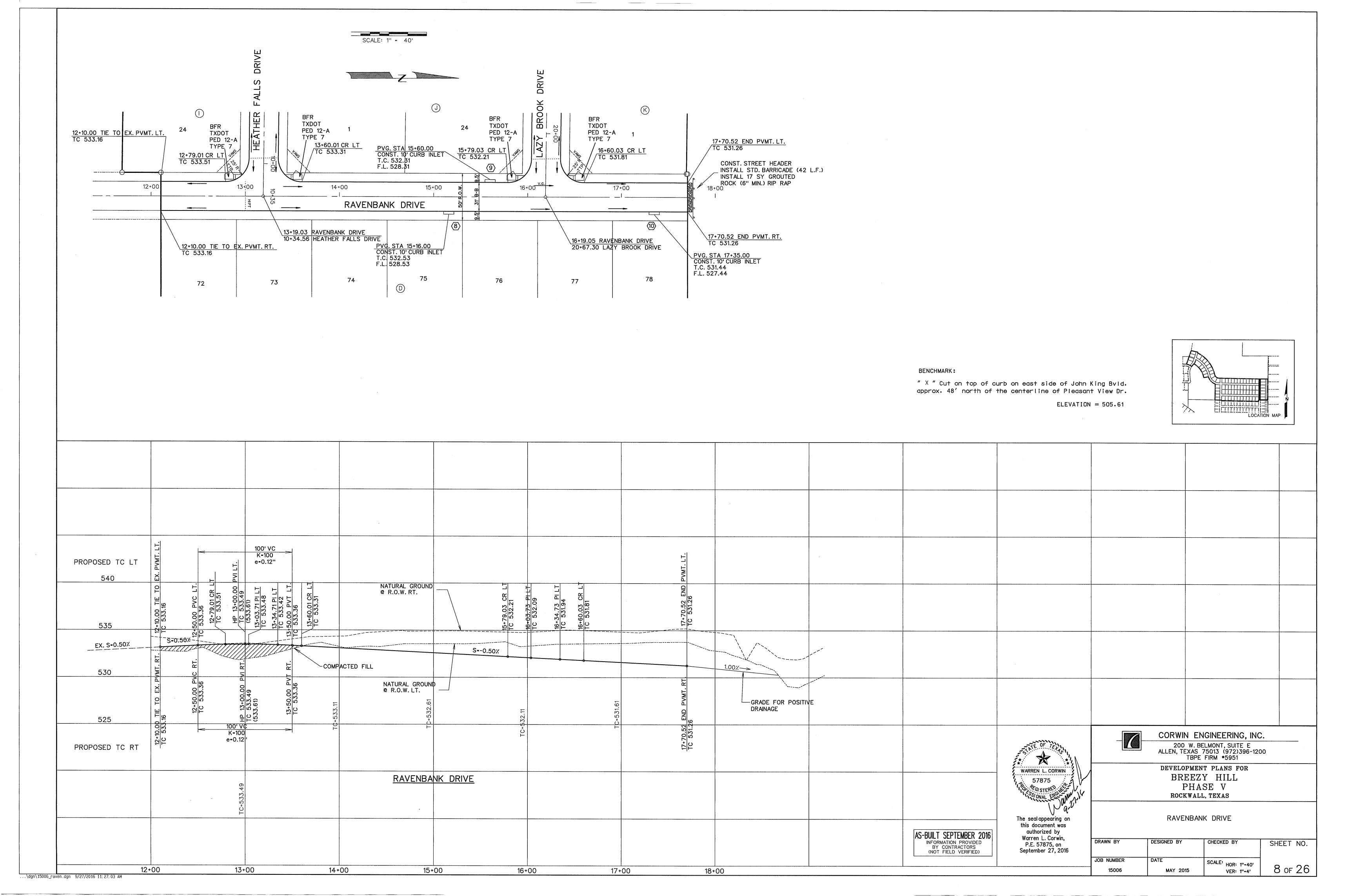

The seal appearing on this document was authorized by Warren L. Corwin, P.E. 57875, on September 27, 2016

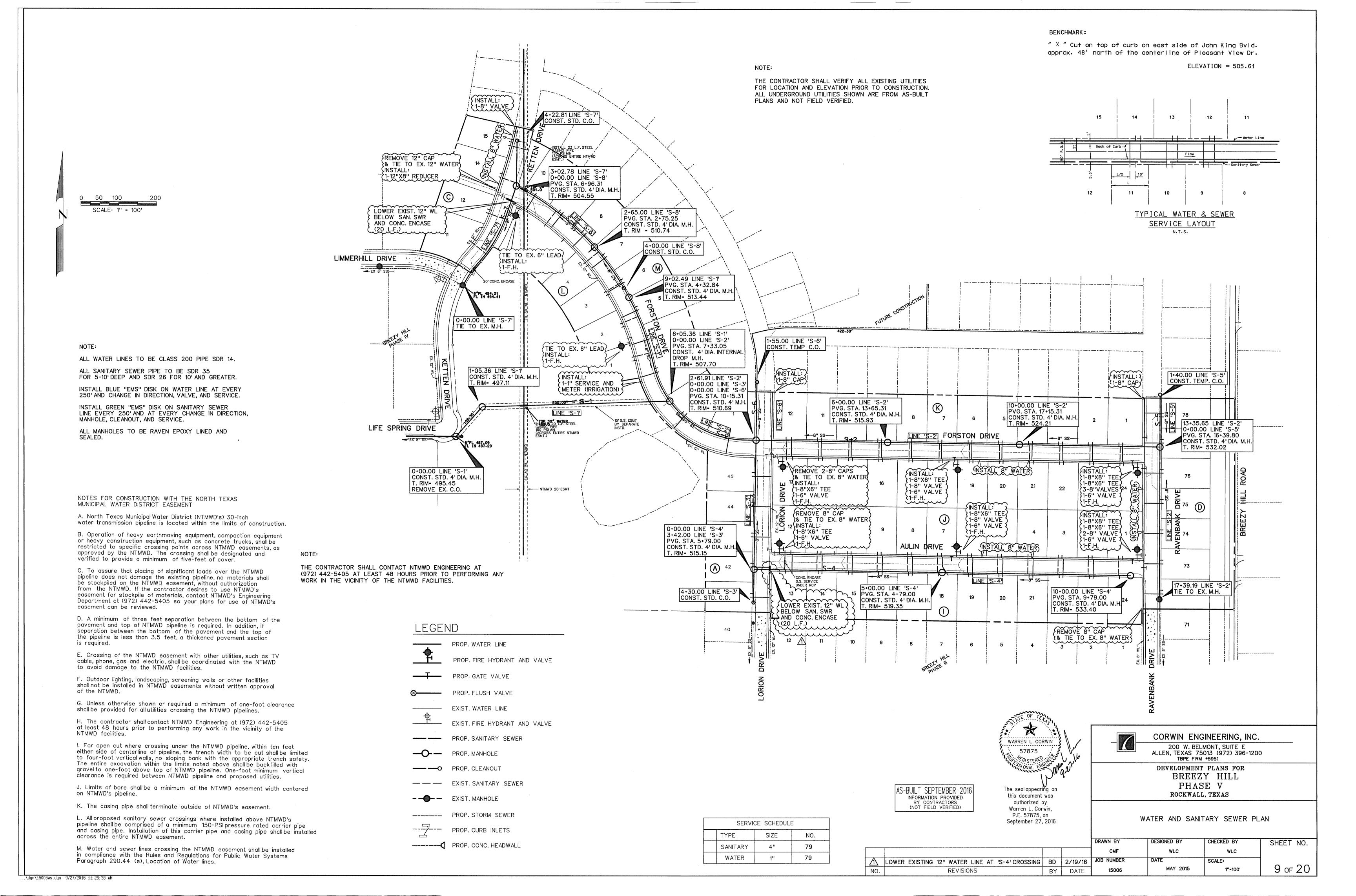

NOTE:

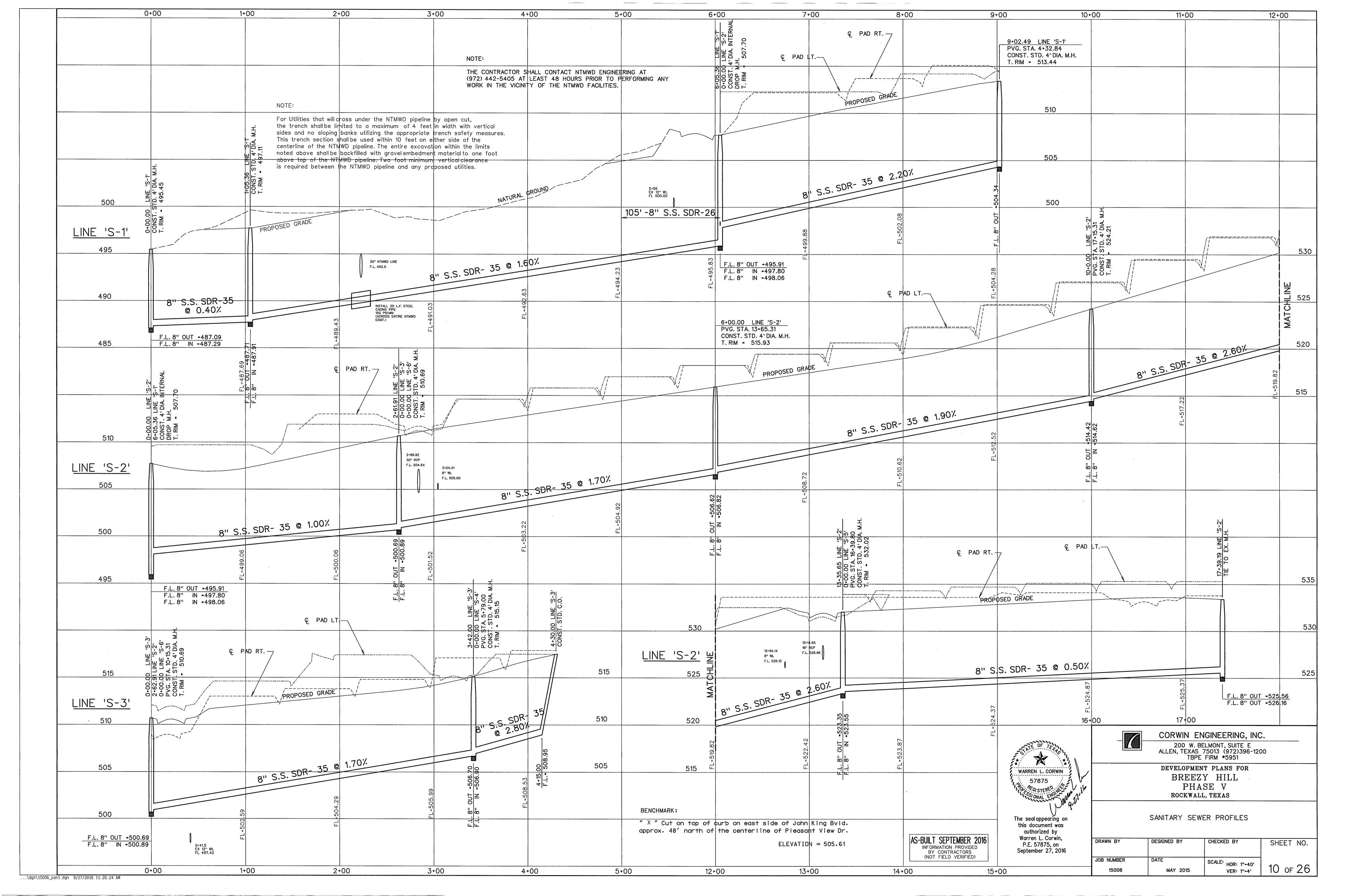

CITY OF ROCKWALL STANDARDS
AND NCTCOG 3rd ADDITION STANDARDS
SHALL BE USED FOR REFERENCE.

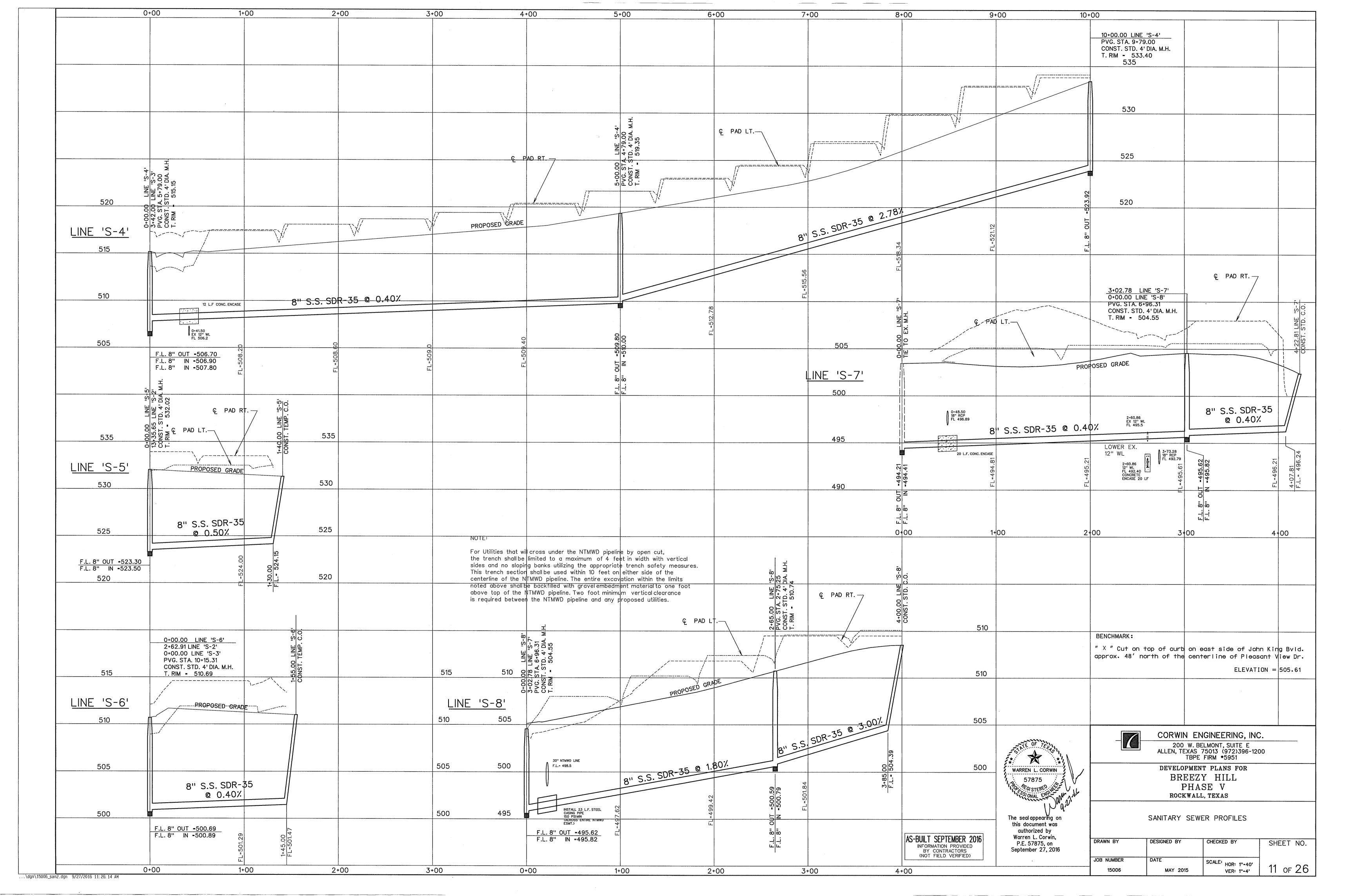

1	CITY COMMENTS	07/27/15
1	CHY COMMENTS	0//2//13
NO.	REVISIONS	DATE

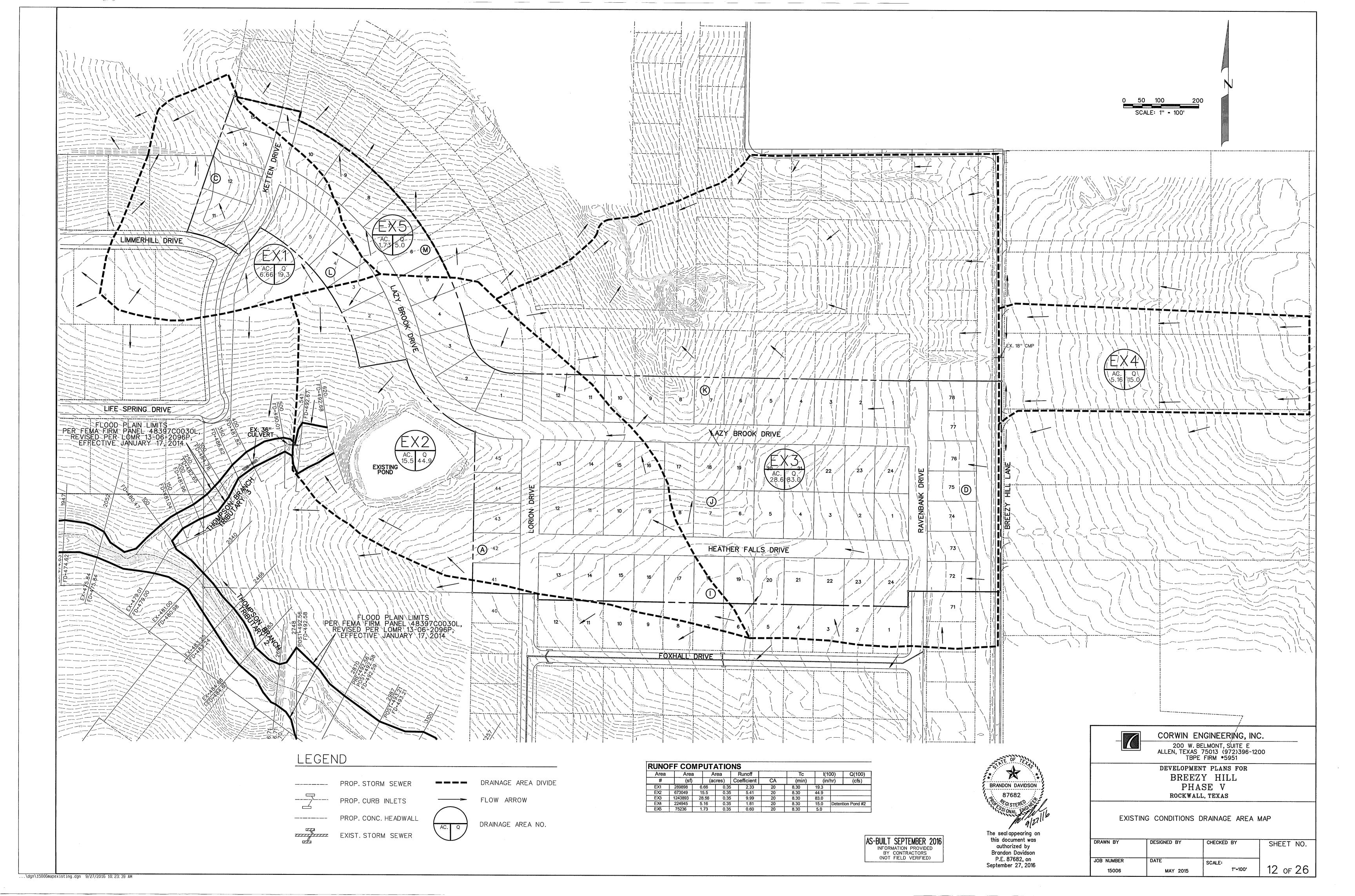


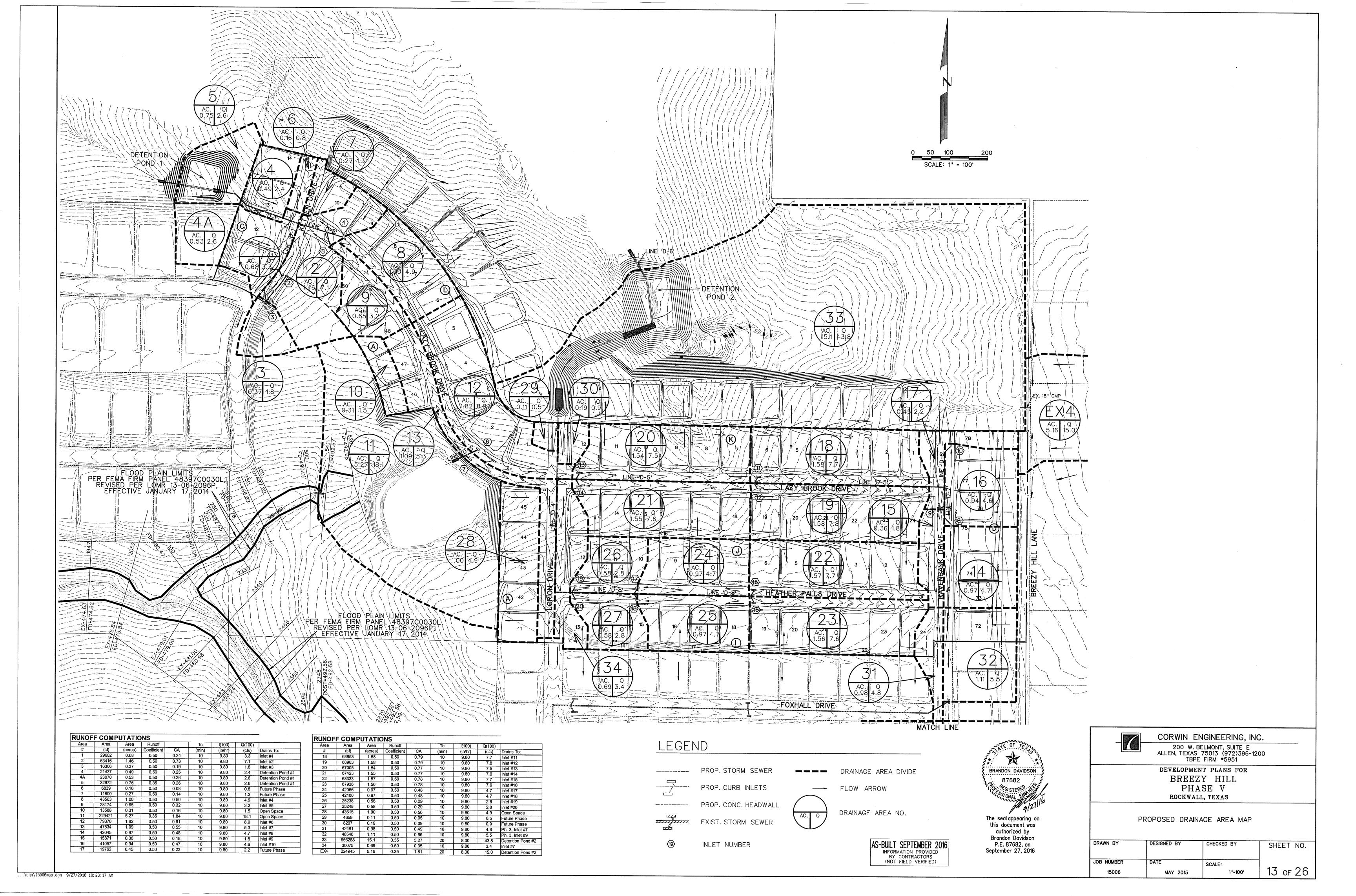


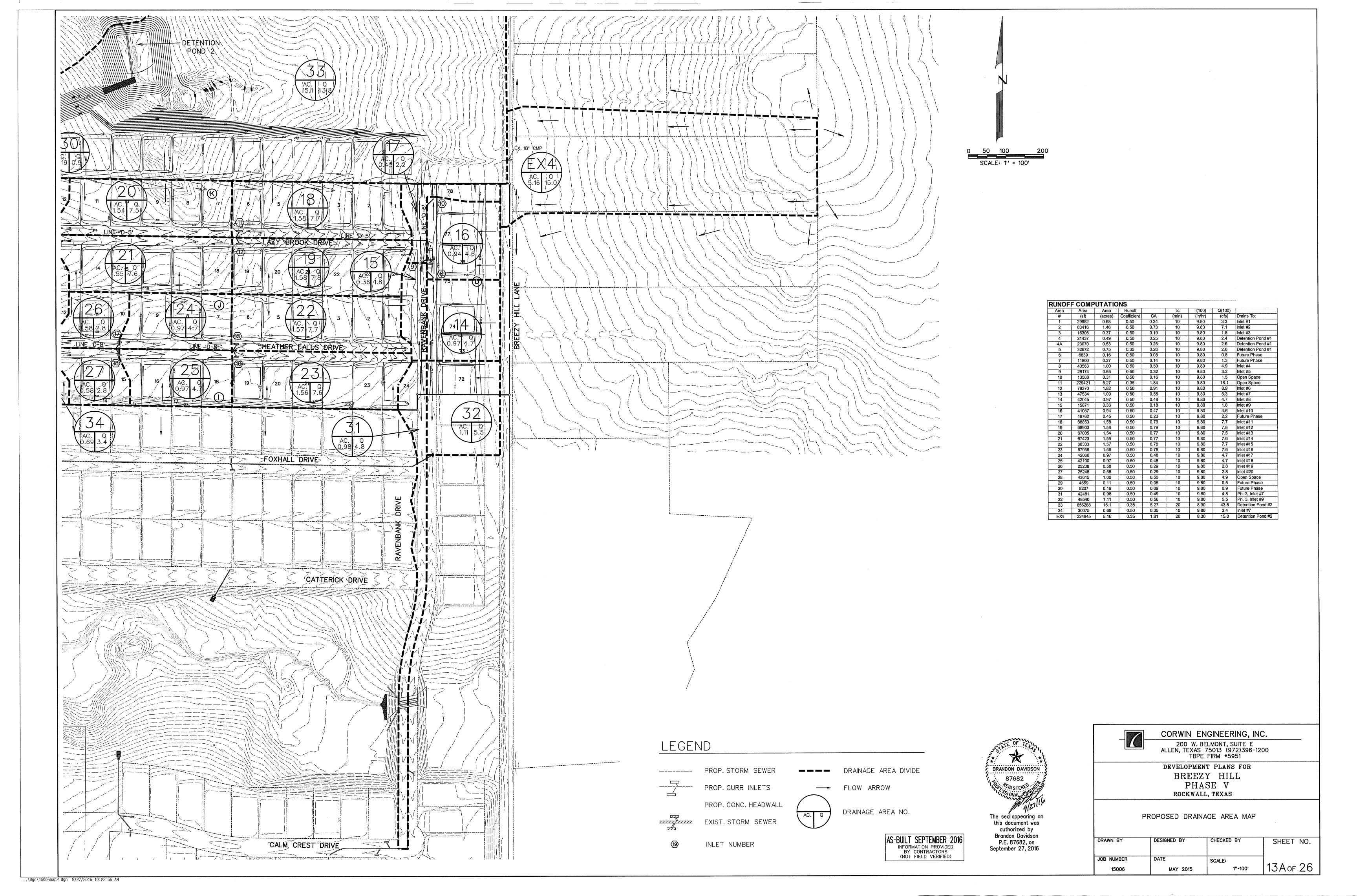


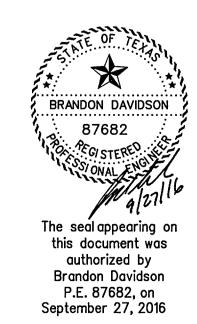










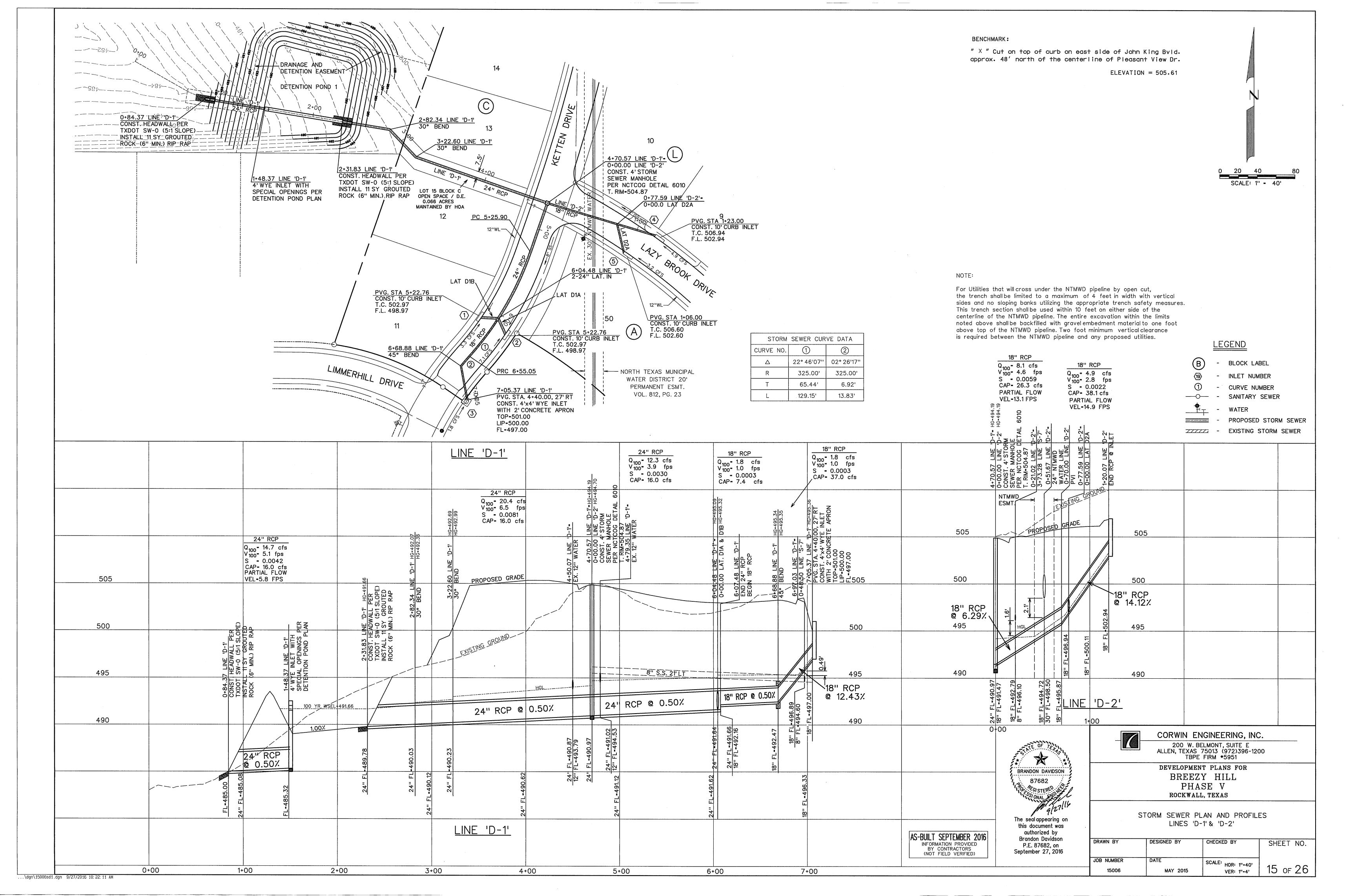

STORM SEWER CALCULATIONS

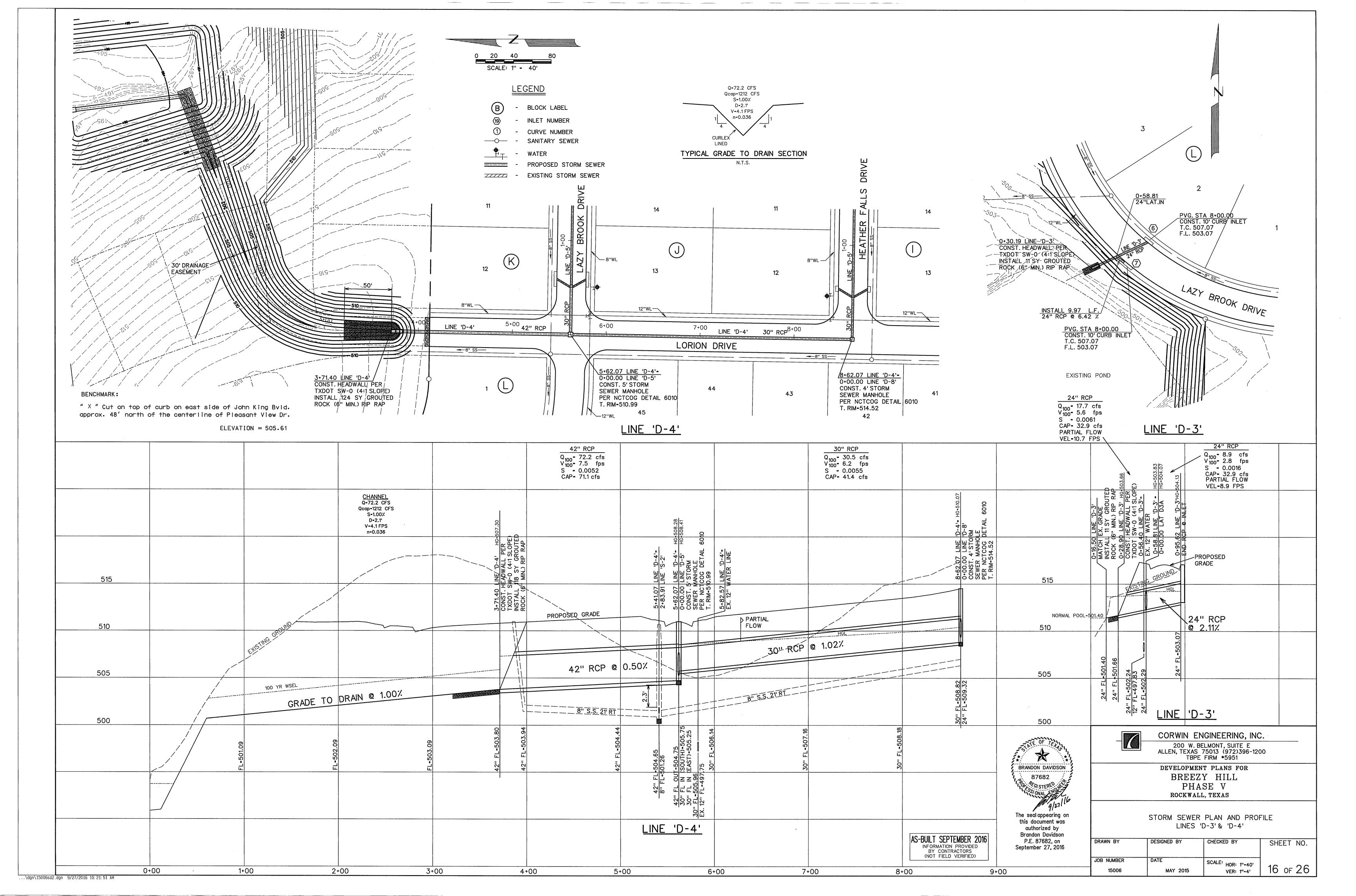
...\dgn\15006calc.dgn 9/27/2016 10:22:32 AM

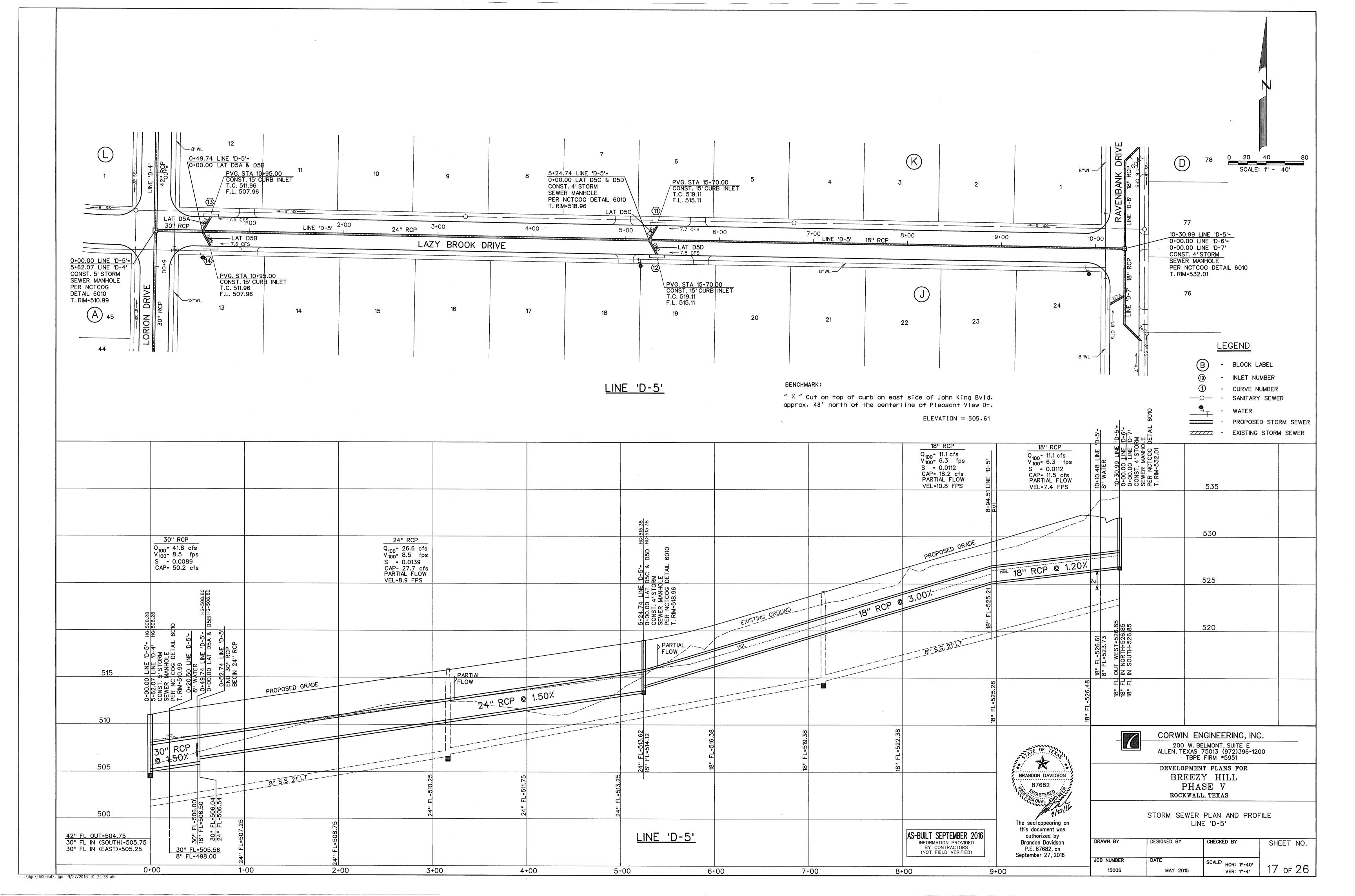
Upstream	M SEW	Distance	AREA		Picked Up		1	Accumulated	Тс	Design Storm	1	Q	S	Pipe Size	Partial	Velocity	Flow Time	Velocity Head	Junction	К	Time at D/S	Minoriossos	Hydraulio Crodo	Hydraulic Grade
Station	Station	(ft)	NO.	(Acres)	(Acres)	C	CA	CA	(Min)	(Years)	(in/hr)	(CFS)	(ft/ft)	(in)	Flow?	(fps)	(Min)	(ft)	Туре	<u> </u>	(Min)	(ft)	Upstream	Downstream
Line D1									<u> </u>							(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			.,,,,,				0,00000	
7+05.37 6+68.88	6+68.88 6+04.48	36.49 64.40	3 Bend	0.37	0.37	0.50	0.19	0.19	10.00	100	9.80 9.80	1.8	0.0003	18	Yes No	11.0	0.06	1.88	Inlet 45° Bend	1.25 0.50	10.06	0.01	405.25	495.36
6+04.48	4+70.57	133.91	1,2	2.14	2.14	0.50	1.07	1.26	11.09	100	9.80	12.3	0.0030	24	No	3.9	0.57	0.02	60° Wye	0.60	11.09	0.01	495.35 495.32	495.34 495.09
4+70.57	3+22.60	147.97	D2	1.65	1.65	0.50	0.82	2.08	11.66	100	9.80	20.4	0.0081	24	No	6.5	0.38	0.65	MH	1.00	12.04	0.51	494.70	494.19
3+22.60 2+82.34	2+82.34 2+31.83	40.26 50.51	Bend Bend	0.00	0.00	0.50	0.00	2.08	12.04	100	9.80	20.4	0.0081	24	No	6.5	0.10	0.65	30° Bend	0.45	12.14	0.29	492.99	492.69
2+31.83	2102.00	50.51	Dona	0.00	0.00	0.30	0.00	2.00	12.14	100	9.80	20.4	0.0081	24	No	6.5	0.13	0.65	30° Bend	0.45	12.27	0.29	492.36 491.66	492.07
Lat D1a																								1
0+18.29 0+00.00	0+00.00	18.29	2	1.46	1.46	0.50	0.73	0.73	10.00	100	9.80	7.1	0.0010	24	Yes	24.0	0.01	8.94	Inlet	1.25	10.01			495.11
Lat D1b						 						 		 	ļ	3.9	0.00	0.24	60° Wye	0.60	0.00	0.00	495.09	495.09
0+18.05	0+00.00	18.05	1	0.68	0.68	0.50	0.34	0.34	10.00	100	9.80	3.3	0.0002	24	Yes	18.9	0.02	5.55	Inlet	1.25	10.02			495.10
0+00.00 Line D2			· · · · · · · · · · · · · · · · · · ·		-		ļ <u>.</u>	<u></u>	<u> </u>							3.9	0.00	0.24	60° Wye	0.60	0.00	0.00	495.09	495.09
1+20.07	0+77.59	42.48	8	1.00	1.00	0.50	0.50	0.50	10.00	100	9.80	4.9	0.0022	18	Yes	14.9	0.05	3.45	мн	1.25	10.05	3.45	498 18	494.74
0+77.59	0+00.00	77.59	9	0.65	0.65	0.50	0.32	0.82	10.05	100	9.80	8.1	0.0059	18	Yes	13.1	0.10	2.66	МН	1.00	10.15	0.00	494.64	494.64
0+00.00																6.5	0.00	0.65	МН	1.00	0.00	0.00	494.19	494.19
Dat D2a 0+31.11	0+00.00	31.11	9	0.65	0.65	0.50	0.32	0.32	10.00	100	9.80	3.2	0.0009	18	Yes	14.2	0.04	3.13	Inlet	1.25	10.04			494.67
0+00.00				0.00	0.00	10.00	0.32	0.52	10.00	100	7.00	3,2	0.0009	10	165	6.5	0.00	0.65	60° Wye	0.60	0.00	0.00	494.64	494.64
Line D3	0.50.01	04 04	1.0	4.55																				
0+95.62 0+58.81	0+58.81 0+30.19	36.81 28.62	12 13,34	1.82	1.82	0.50	0.91	0.91	10.00	100	9.80	8.9	0.0016	24	Yes	8.9	0.07	1.23	Inlet	1.25	10.07	0.24	504.03	504.13
0+28.90	0,00,12	20.02	20,01		1	0.50	0.07	1.00	10.07	100	9.00	1,.,	0.0081	- 24	Yes	10.7	0.04	1.78	60° Wye	0.60	10.11	0,24	504.07 503.66	503.83
Lat D3a																		······						
0+09.97	0+00.00	9.97	13	1.09	1.78	0.50	0.89	0.89	10.00	100	9.80	8.7	0.0015	24	Yes	14.2	0.01	3.13	Inlet	1.25	10.01			503.85
Line D4												 		1		10.7	0.00	1.78	60° Wye	0.60	0.00	0.00	503.83	503.83
8+62.07	5+62.07	300.00	D8	6.22	6.22	0.50	3.11	3.11	10.00	100	9.80	30.5	0.0055	30	Ио	6.2	0.81	0.60	мн	1.25	10.81			510.07
5+62.07 3+71.40	3+71.40	190.67	D5	8.52	8.52	0.50	4.26	7.37	10.81	100	9.80	72.2	0.0052	42	Ио	7.5	0.42	0.88	МН	1.00	11.23	0.13	508.41	508.28
Line D5					<u> </u>												<u> </u>						507.30	
10+30.99	5+24.74	506.25	D6,D7	2.27	2.27	0.50	1.14	1.14	10.00	100	9.80	11.1	0.0112	18	Yes	10.8	0.78	1.81	мн	1.25	10.78			521.07
5+24.74	0+49.74	475.00	18,19	3.16	3,16	0.50	1.58	2.72	10.78	100	9.80	26.6	0.0139	24	Yes	10.0	0.79	1.55	MH	1.00	11.57	0.00	515.38	515.38
0+49.74	0+00.00	49.74	20,21	3.09	3.09	0.50	1.54	4.26	11.57	100	9.80	41.8	0.0104	3.0	Ио	8.5 7.5	0.10	0.88	60° Wye	1.00	0.00	0.00	508.80	508.80
Lat D5a																7.5	0.00	0.00	HI	1.00	0.00	0,00	508.28	508.28
0+17.90	0+00.00	17.90	20	1.54	1.54	0.50	0.77	0.77	10.00	100	9.80	7.5	0.0051	18	Yes	14.2	0.02	3.13	Inlet	1.25	10.02			508.89
0+00.00 Lat D5b						 	ļ							-		8.5	0.00	1.12	60° Wye	0.60	0.00	0.00	508.80	508.80
0+17.90	0+00.00	17.90	21	1.55	1.55	0.50	0.77	0.77	10.00	100	9.80	7.6	0.0052	18	Yes	14.2	0.02	3.13	Inlet	1.25	10.02		<u> </u>	508.89
0+00.00																8.5	0.00	1.12	60° Wye	0.60	0.00	0.00	508.80	508.80
1at D5c 0+17.90	0+00.00	17.90	18	1.58	1.58	0.50	0.79	0.79	10.00	100	0.00		0.0054	10	77	10.1				4 05	10.00			
0+00.00	0+00.00	17.70		1.36	1.30	0.50	0.79	0.79	10.00	100	9.80	7.7	0.0054	18	Yes	12.4	0.02	2.39 1.55	Inlet MH	1.25	0.00	0.00	515.38	515.48 515.38
Lat D5d																20.0	0.00			1.00	0.00	0.00	010.00	310.30
0+17.90	0+00.00	17.90	19	1.58	1.58	0.50	0.79	0.79	10.00	100	9.80	7.8	0.0054	18	Yes	12.4	0.02	2.39	Inlet	1.25	10.02			515.48
Line D6			!		 		 					 				10.0	0.00	1.55	МН	1.00	0.00	0.00	515.38	515.38
1+17.49	0+00.00	117.49	16	0.94	0.94	0.50	0.47	0.47	10.00	100	9.80	4.6	0.0019	18	Yes	4.4	0.45	0.30	Inlet	1.25	10.45			522.73
0+00.00																10.8	0.00	1.81	мн	1.00	0.00	1.44	522.50	521.07
1+04.59	0+80.55	24.04	14	0.97	0.97	0.50	0.48	0.48	10.00	100	9.80	4.7	0.0020	18	Yes	6.9	0.06	0.74	Inlet	1.25	10.06			523.53
0+80.55	0+50.10	30.45	Bend	0.00	0.00	0.50	0.00	0.48	10.06	100	9.80	4.7	0.0020	18	Yes	6.9	0.07	0.74	45° Bend	0.50	10.13	0.37	523.48	523.33
0+50.10	0+00.00	50.10	15	0.36	0.36	0.50	0.18	0.66	10.13	100	9.80	6.5	0.0038	18	Yes	7.5	0.11	0.87	60° Wye	0.60	10.24	0.50	523.05	522,55
0+00.00 Lat D7a		~										.		<u> </u>		10.8	0.00	1.81	МН	1.00	0.00	1.29	522.35	521.07
0+17.90	0+00.00	17.90	15	0.36	0.36	0.50	0.18	0.18	10.00	100	9.80	1.8	0.0003	18	Yes	1.0	0.30	0.02	Inlet	1.25	10.30	0.02	523.43	523.42
0+00.00																7.5	0.00	0.87	60° Wye	0.60	0.00	0.86	523.41	522.55
Line D8 5+21.05	2+11.05	310.00	22,23	3.13	2.73	0.50	1.37	1.37	10.00	100	9.80	13.4	0.0035	24	No	4.3	1.21	0.28	60° Wye	1.25	11.21			515.27
2+11.05	0+44.55	166.50	24,25	1.93	2.33	0.50	1.16	2.53	11.21	100	9.80	24.8	0.0120	24	Ио	7.9	0.35	0.28	60° Wye	0.60	11.56	0.61	514.18	513.57
0+44.55	0+00.00	44.55	26,27	1.16	1.16	0.50	0.58	3.11	11.56	100	9.80	30.5	0.0055	3.0	No	6.2	0.12	0.60	60° Wye	0.60	11.68	0.00	511.57	511.57
0+00.00 Lat D8a									<u> </u>							6.2	0.00	0.60	МН	1.00	0.00	0.60	511.32	510.07
0+17.90	0+00.00	17.90	26	0.58	0.58	0.50	0.29	0.29	10.00	100	9.80	2.8	0.0007	18	No	1.6	0.19	0.04	Inlet	1.25	10.19			512.15
0+00.00																6.2	0.00	0.60	60° Wye	0.60	0.00	0.57	512.14	511.57
1 D8b 0+17.90	0+00.00	17.90	27	0.58	0.58	0.50	0.29	0.29	10.00	100	9.80	2.8	0.0007	1.0	\r_	1.0	0.10	0.04	T 1 1	1 05	10 10			F10 15
0+00.00	0.00,00	27.70		3.38	3.30	3.30	0.23	0,27	10.00	100	2.80	۷.۵	0.000/	18	Ио	6.2	0.19	0.04	Inlet 60° Wye	0.60	0.00	0.57	512.14	512.15 511.57
Lat D8c																					2.20			
0+17.90	0+00.00	17.90	24	0.97	1.17	0.50	0.58	0.58	10.00	100	9.80	5.7	0.0030	18	No	3.2	0.09	0.16	Inlet	1.25	10.09	0.20	514.69	514.49
Lat D8d														+		7.9	0.00	0.97	60° Wye	0.60	0.00	0.87	514.44	513.57
0+17.90	0+00.00	17.90	25	0.97	1.16	0.50	0.58	0.58	10.00	100	9.80	5.7	0.0029	18	Ио	3.2	0.09	0.16	Inlet	1.25	10.09	0.20	514.69	514.49
0+00.00				ļ <u>.</u>		1						ļ				7.9	0.00	0.97	60° Wye	0.60	0.00	0.87	514.44	513.57
0+17.90	0+00.00	17.90	22	1.57	1.37	0.50	0.68	0.68	10.00	100	9.80	6.7	0.0041	18	Yes	11.5	0.03	2 05	Tnlat	1 25	10.03			F15 34
0+00.00						5.50	3.00	0.00	20.00	700	, ou	0.7	0.0041	1	165	4.3	0.00	2.05 0.28	Inlet 60' Wye	0.60	0.00	0.00	515.27	515.34 515.27
Lat D8f	0.00	45.00		,																				
0+17.90	0+00.00	17.90	23	1.56	1.37	0.50	0.68	0.68	10.00	100	9.80	6.7	0.0041	18	Yes	11.5	0.03	2.05	Inlet	1.25	10.03	0.00	E4E 05	515.34
Line D9						<u> </u>						 				4.3	0.00	0.28	60° Wye	0.60	0.00	0.00	515.27	515.27
TITE DE		34.74	n	1			Detent	in Pond Re				96.4	0.0092	42	No	10.0	0.06	1.56		1.25	0.06			492.54
0+84.74	0+50.00				T																			
	0+50.00 0+00.00	50.00	0	0.00	0.00	0.50	0.00	0.00	0.06	100	9.80	96.4	0.0045	48		7.7	0.11	0.91		1.00	0.17	0.00	492.23 492.00	492.23

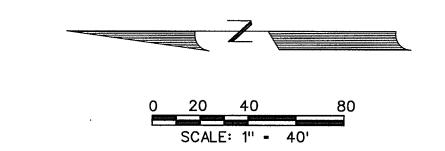
INLET	CALCU	LATIONS	;																							
					Design			Area Runc	off: Q=CIA			Carry-Over	Total				Maximum	Actual	Maximum] 9	Selected Inl	et			
					Storm		Intensity	Runoff		Area		from	Gutter	Gutter	Gutter		Allowable	Ponding	Allowable	Actual			Inlet	Carry-Over to	Carry-Over to	Carry-Over
	,	Inlet		,	Freq.	Tc	" "	Coeff.		"A"	Q	Upstream	Flow	Capacity	Slope	Crown	Ponding Depth	Depth	Spread	Spread	Length		Capacity	Downstream	Downstream	CA
Inlet No.	Station	Offset	t	Street	(years)	(min)	(in/hr)	"C"	DA#	(acres)	(cfs)	(cfs)	(cfs)	(cfs)	(ft/100 ft)	Type	(ft)	(ft)	(ft)	(ft)	LI (ft)	Туре	(cfs)	Inlet (cfs)	Inlet No.	
1	5+22.76	0+15.50	LT	Ketton Drive	100	10	9.8	0.5	1	0.68	3.3	0.0	3.3	11.6	Low Pt	6" pbl	0.5	0.14	15	4.3	10	STD.	21.0	0.0	-	
2	5+22.76	0+15.50	RT	Ketton Drive	100	10	9.8	0.5	2	1.46	7.1	0.0	7.1	11.6	Low Pt	6" pbl	0.5	0.31	15	9.2	10	STD.	21.0	0.0	-	
3	4+40.00	0+27.00	RT	Ketton Drive	100	10	9.8	0.5	3	0.37	1.8	0.0	1.8	0.0	Low Pt	6" pbl	-	-	-	-	4'x4'	WYE	29.0	0.0	-	
4	1+23.00	0+15.50	LT	Lazy Brook Drive	100	10	9.8	0.5	8	1.00	4.9	0.0	4.9	11.1	2.00%	6" pbl	0.5	0.22	15	6.6	10	STD.	6.0	0.0	-	
5	1+06.00	0+15.50	RT	Lazy Brook Drive	100	10	9.8	0.5	9	0.65	3.2	0.0	3.2	11.1	2.00%	6" pbl	0.5	0.14	15	4.3	10	STD.	6.0	0.0	-	
6	8+00.00	0+15.50	LT	Lazy Brook Drive	100	10	9.8	0.5	12	1.82	8.9	0.0	8.9	9.5	Low Pt	6" pbl	0.5	0.47	15	14.2	10	STD.	21.0	0.0	-	
7	8+00.00	0+15.50	RT	Lazy Brook Drive	100	10	9.8	0.5	13	1.78	8.7	0.0	8.7	9.5	Low Pt	6" pbl	0.5	0.46	15	13.8	10	STD.	21.0	0.0	-	
8	15+16,00	0+15.50	RT	Ravenbank Drive	100	10	9.8	0.5	14	0.97	4.7	0.0	4.7	4.7	0.50%	6" pbl	0.5	0.50	15	15.0	10	STD.	7.8	0.0	_	
9	15+60.00	0+15.50	LT	Ravenbank Drive	100	10	9.8	0.5	15	0.36	1.8	0.0	1.8	4.7	0.50%	6" pbl	0.5	0.19	15	5.7	10	STD.	7.8	0.0	-	
10	17+35.00	0+15.50	RT	Ravenbank Drive	100	10	9.8	0.5	16	0.94	4.6	0.0	4.6	4.7	0.50%	6" pbl	0.5	0.49	15	14.6	10	STD.	7.8	0.0	-	
11	15+70.00	0+15.50	LT	Lazy Brook Drive	100	10	9.8	0.5	18	1.58	7.7	0.0	7.7	8.2	1.50%	6" pbl	0.5	0.47	15	14.2	15	STD.	11.5	0.0	_	
12	15+70.00	0+15.50	RT	Lazy Brook Drive	100	10	9,8	0.5	19	1.58	7.8	0.0	7.8	8.2	1.50%	6" pbl	0.5	0.47	15	14.2	15	STD.	11.5	0.0	-	
13	10+95.00	0+15.50	LT	Lazy Brook Drive	100	10	9.8	0.5	20	1.54	7.5	0.0	7.5	8.2	1.50%	6" pbl	0.5	0.46	15	13.8	15	STD.	11.5	0.0	_	
14	10+95.00	0+15.50	RT	Lazy Brook Drive	100	10	9.8	0.5	21	1.55	7.6	0.0	7.6	8.2	1.50%	6" pbl	0.5	0.46	15	13.9	15	STD.	11.5	0.0	_	
15	5+30.00	0+15.50	LT	Heather Falls Drive	100	10	9.8	0.5	22	1.57	7.7	0.0	7.7	8.7	1.68%	6" pbl	0.5	0.44	15	13.3	10	STD.	6.7	1.0	17	0.10
16	5+30.00	0+15.50	RT	Heather Falls Drive	100	10	9.8	0.5	23	1.56	7.6	0.0	7.6	8.7	1.68%	6" pbl	0.5	0.44	15	13.2	10	STD.	6.7	0.9	18	0.10
17	2+20.00	0+15.50	LT	Heather Falls Drive	100	10	9.8	0.5	24	0.97	4.7	1.0	5.7	6.0	0.80%	6" pbl	0.5	0.48	15	14.3	10	STD.	7.3	0.0		
18	2+20.00	0+15.50	RT	Heather Falls Drive	100	10	9.8	0.5	25	0.97	4.7	0.9	5.7	6.0	0.80%	6" pbl	0.5	0.47	15	14.2	10	STD.	7.3	0.0		
19	0+53.50	0+15.50	LT	Heather Falls Drive	100	10	9.8	0.5	26	0.58	2.8	0.0	2.8	6.7	0.99%	6" pbl	0.5	0.21	15	6.4	5	STD.	2.9	0.0		
20	0+53.50	0+15.50	RT	Heather Falls Drive	100	10	9.8	0.5	27	0.58	2.8	0.0	2.8	5.6	0.70%	6" pbl	0.5	0.25	15	7.6	5	STD.	3.0	0.0		

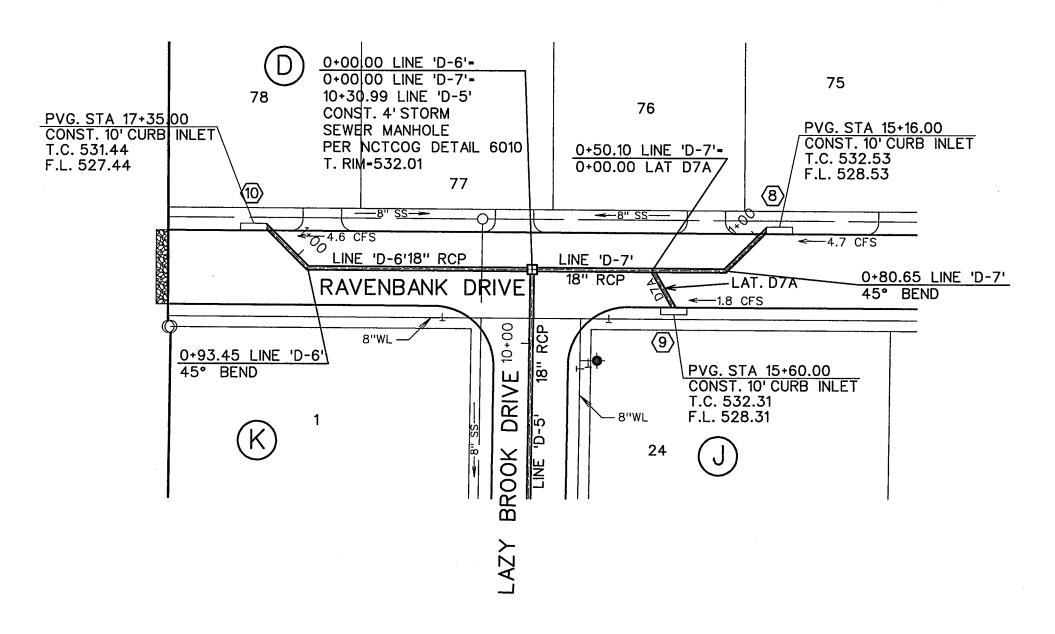
AS-BUILT SEPTEMBER 2016
INFORMATION PROVIDED
BY CONTRACTORS
(NOT FIELD VERIFIED)


CORWIN ENGINEERING, INC.


200 W. BELMONT, SUITE E
ALLEN, TEXAS 75013 (972)396-1200
TBPE FIRM *5951


DEVELOPMENT PLANS FOR
BREEZY HILL
PHASE V
ROCKWALL, TEXAS


DRAINAGE CALCULATIONS


DRAWN BY	DESIGNED BY	CHECKED BY	SHEET NO.
JOB NUMBER	DATE	SCALE: HOR: 1"-40'	14 00
15006	MAY 2015	VER: 1"-4'	14 of 26

LINE 'D-6' & 'D-7'

LINE 'D-7'

1+00

2+00

0+00

LINE 'D-6'

0+00

1+00

2+00

...\dgn\15006sd4.dgn 9/27/2016 10: 21: 15 AM

BENCHMARK:

" $^{\prime\prime}$ " Cut on top of curb on east side of John King Bvld. approx. 48' north of the centerline of Pleasant View Dr.

ELEVATION = 505.61

The seal appearing on this document was authorized by Brandon Davidson P.E. 87682, on September 27, 2016

AS-BUILT SEPTEMBER 2016
INFORMATION PROVIDED
BY CONTRACTORS
(NOT FIELD VERIFIED)

LEGEND

B - BLOCK LABEL

(19) - INLET NUMBER

1 - CURVE NUMBER

- SANITARY SEWER

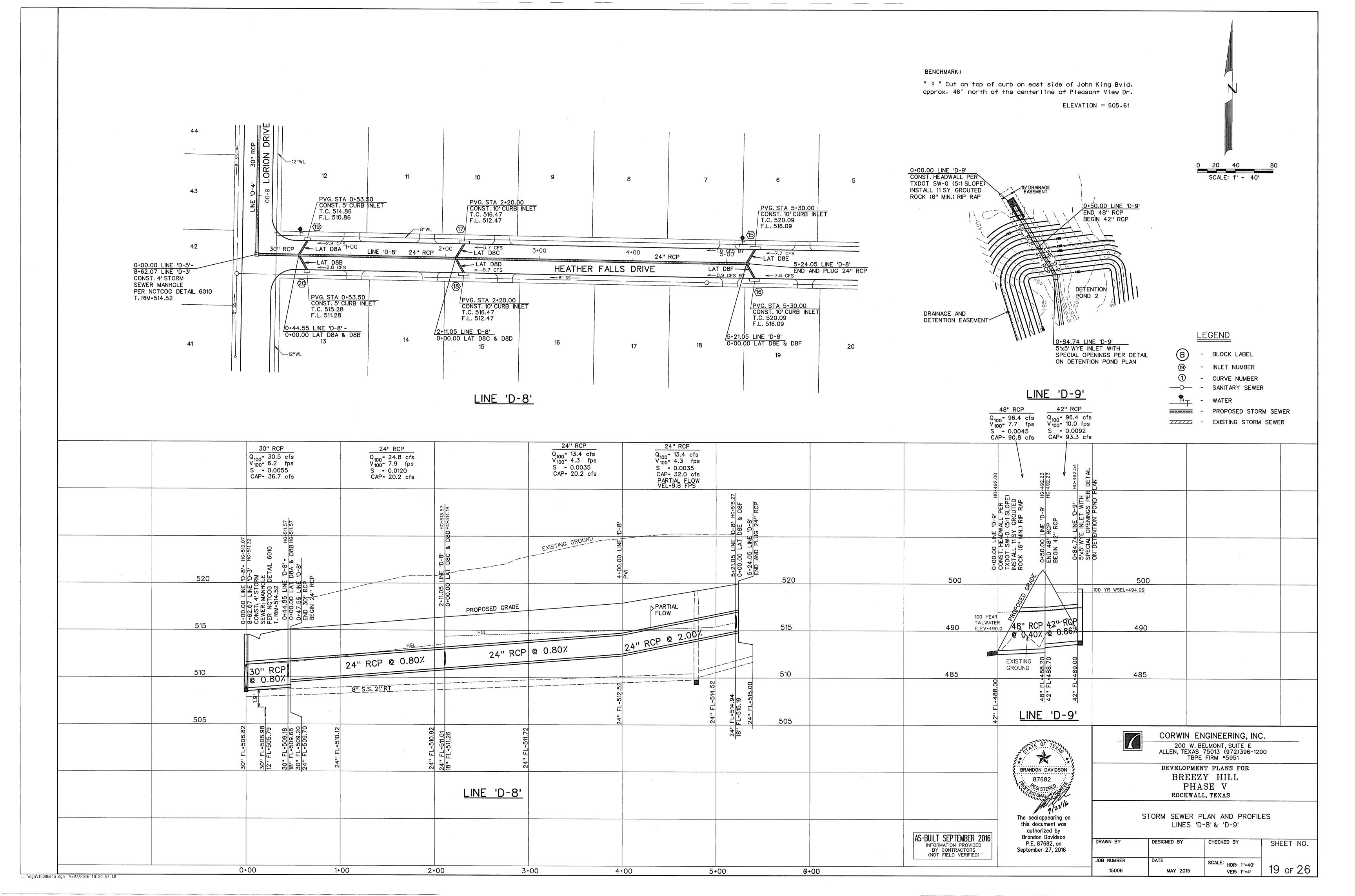
+ - WATER

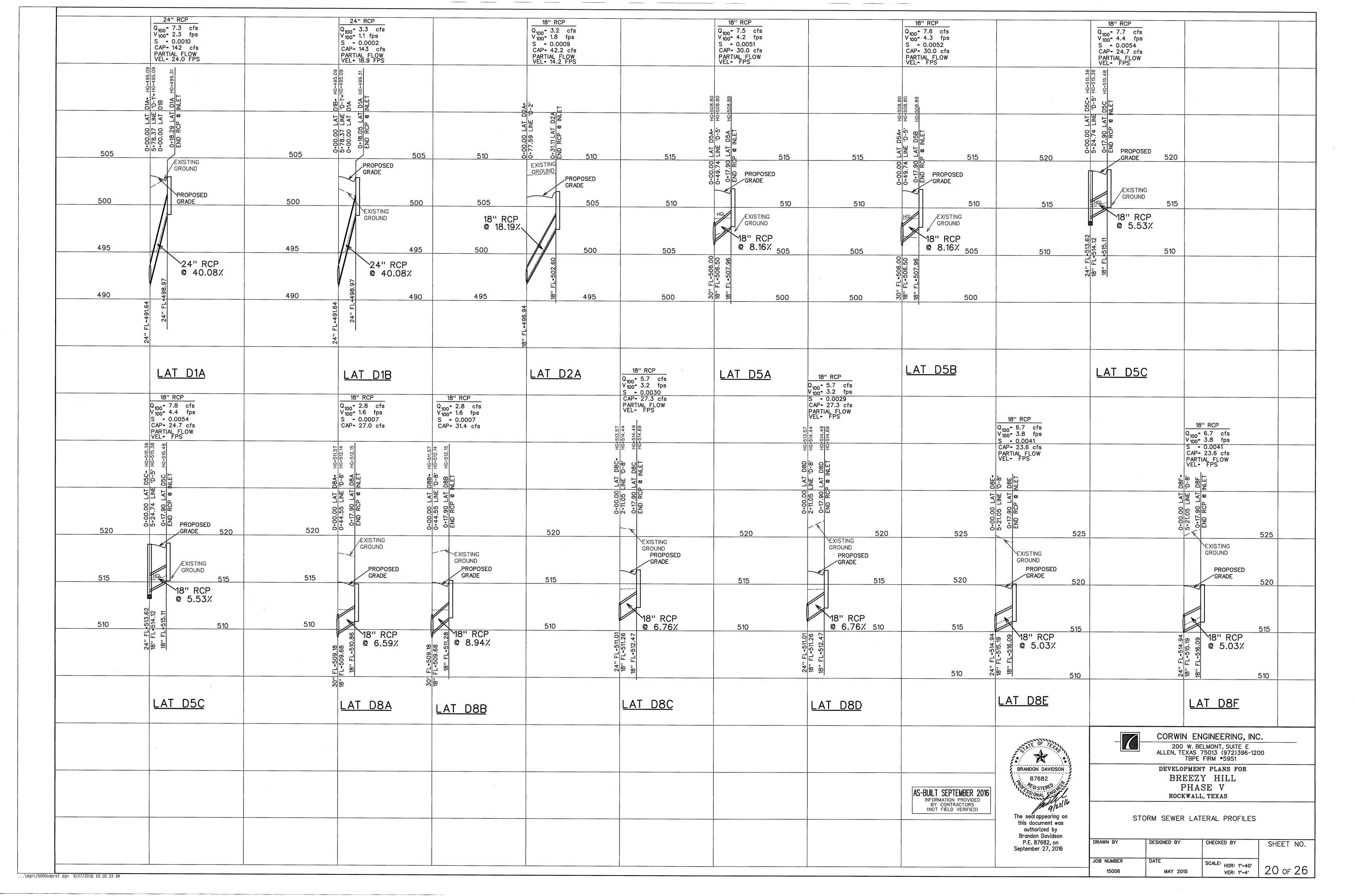
- EXISTING STORM SEWER

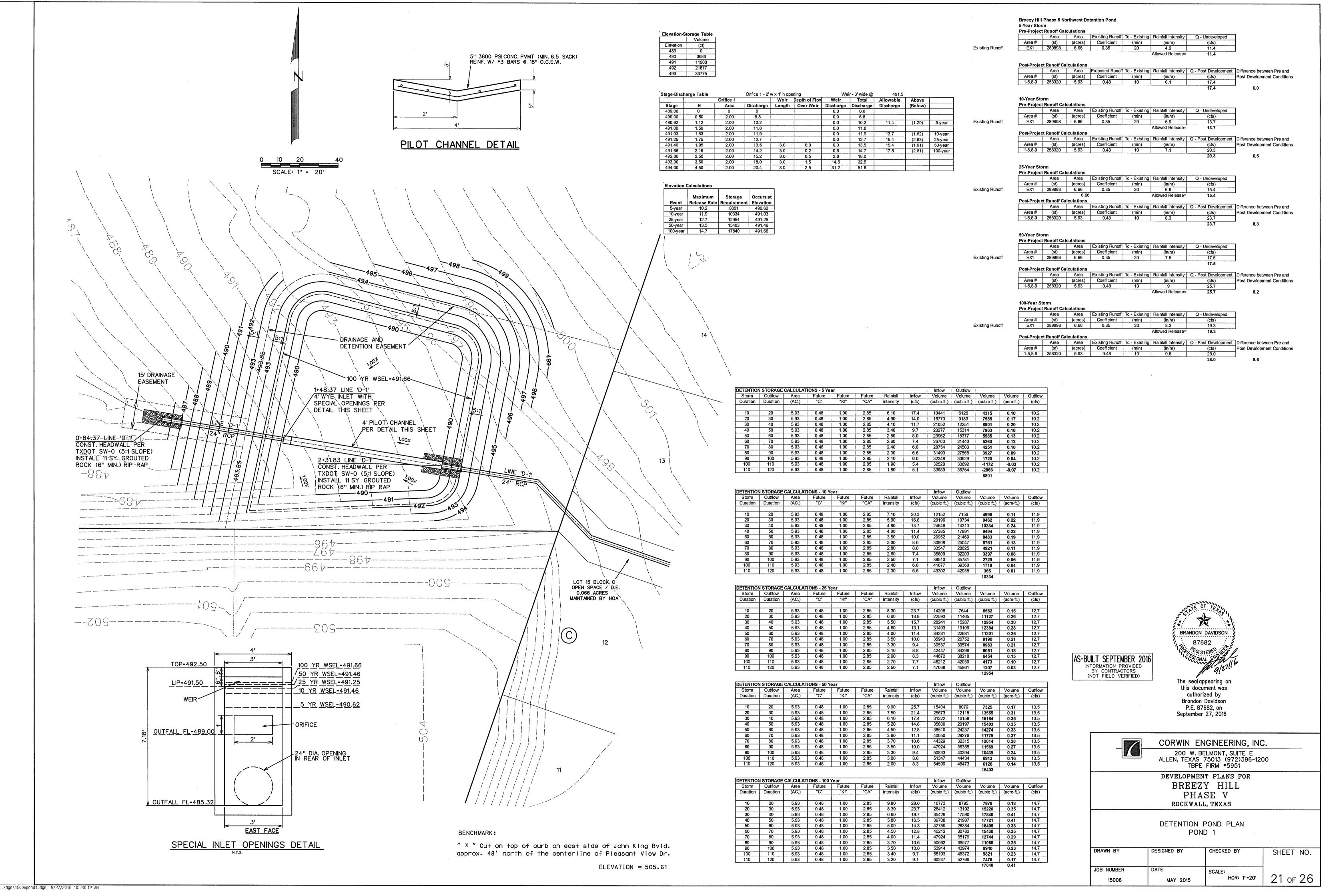
PROPOSED STORM SEWER

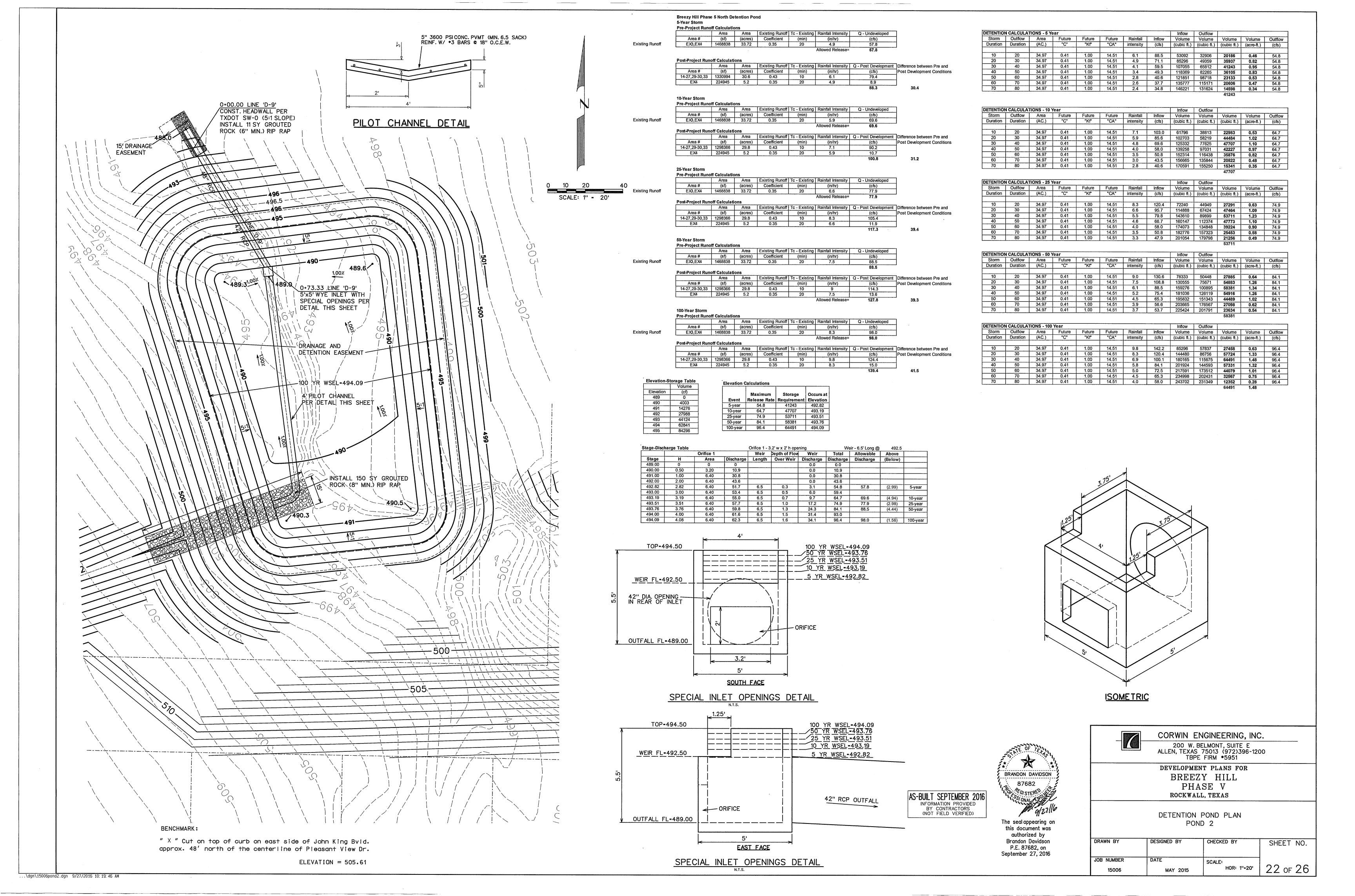
		18" RCP		18" RCP	18" RCP		18" RCP			
		Q ₁₀₀ = 4.6 cfs V ₁₀₀ = 2.6 fps S = 0.0019 CAP= 7.4 cfs PARTIAL FLOW VEL=4.4 FPS		Q ₁₀₀ = 6.5 cfs V ₁₀₀ = 3.7 fps S = 0.0038 CAP = 13.3 cfs PARTIAL FLOW VEL = 7.5 FPS	Q ₁₀₀ = 4.7 cfs V ₁₀₀ = 2.7 fps S = 0.0020 CAP= 13.3 cfs PARTIAL FLOW VEL=6.9 FPS		Q ₁₀₀ = 1.8 cfs V ₁₀₀ = 1.0 fps S = 0.0003 CAP= 20.2 cfs PARTIAL FLOW VEL=7.1 FPS			
		V ₁₀₀ = 2.6 fps		V ₁₀₀ = 3.7 fps	V ₁₀₀ = 2.7 fps		V ₁₀₀ = 1.0 fps			
		S = 0.0019		S = 0.0038	S = 0.0020		S = 0.0003			
		CAP= 7.4 cfs		CAP= 13.3 cfs	CAP= 13.3 cfs		CAP= 20.2 cfs			
		PARTIAL FLOW		PARTIAL FLOW	PARTIAL FLOW		PARTIAL FLOW			
		VEL=4.4 FPS		VEL=7.5 FPS	/ VEL=6.9 FPS		VEL=7.1 FPS			
			9	9 /		·				
			09	09						
	l	<u> </u>			↓ 1.					
)-6' -ET	-5 -2 -	10 1- 15 IA	7 7 1 A 1 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -						·
		<u>α</u> -α <u>ν</u>		이 이 이 의 이	위물					
	빙 e	h.al h.a	ᆈᆑᇚᇋᇰᇰ	레워티 등 등 의 등 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기 기			AT AT OF THE SECOND SEC			
	ᅴᆽ	0+93.45 LINE 45° BEND 0+21.00 LINE 13+14.65 LINE	SOA SILLIN		FIL					
	6년 8		0 0 4 A X X X X	00 4. 4 00 00 NO			00 00 00 00 00 00 00 00 00 00 00 00 00			
	7,0	9.4.6 B 0.0.4	0000 E RIN 1	0.0.0. NA	410		0.00			
	1+17 END	0+93 45° 0+21. 13+14		0+00- 0+00- 0+00- 0+00- 0+50- 0+80- 0+80-						
	535	0 4 0 5	00+00 10+3C CONS CONS T. RIN 1. RIN	916 9 있 없 표 다 이 0 9 14.		535	EXISTING GROUND	535		
		EXISTING GROUND		EVISTING GROUND		333	J GROOND	333		
		FEXISTING 010012 - T		EXISTING GROUND			PROPOSED			
							GRADE			
		PROPOSED GRADE		PROPOSED GRADE	h					
		PROPOSED CIVIDE	\blacksquare		711					
	570				11					
	530		530			530		530		
				161/	<u>]</u>]]					
			 	18" RCP @ 1.61/.] 					
		18" RCP @ 0.50%	-41		T		1911 DCD			
		1.01 & 0.30%					18" RCP @ 3.69%			
			T				@ 3.69%			
	525		525			525		525		
	4 ro	2	10		23		- 2			
	7.3	[2]	8.98 8.05 5.05 5.05	EST-526.85 TH-526.85 TH-526.85 FL-527.65	60		9.7 8.3			
	52	222	526 526 526 526	526 526 526 527	22					
	4 1				µ					
	<u> </u>		MEN 250		#- 					
	520 🛱 💆	<u>\odd_{\oda_{\odd_{\od_{\o</u>	520 520	NOR SOU. 18. 18. 18.		520	<u></u>	520		
		90	5	~_\		520	`	020		
		(OL:	o ≥ z	ŏ <u>≥</u> ≥						CORWIN ENGINEERING, INC.
		522	리	리 근 근		·			anny.	
			<u>8</u> <u>8</u> <u>8</u>	<u> </u>					TE OF TEN	200 W. BELMONT, SUITE E ALLEN. TEXAS 75013 (972)396-1200
		= =								200 W. BELMONT, SUITE E ALLEN, TEXAS 75013 (972)396-1200 TBPE FIRM *5951
		<u>8</u>								DEVELOPMENT PLANS FOR
									BRANDON DAVIDSON	
		1			'	1	1		\$	BREEZY HILL

LAT. D7A

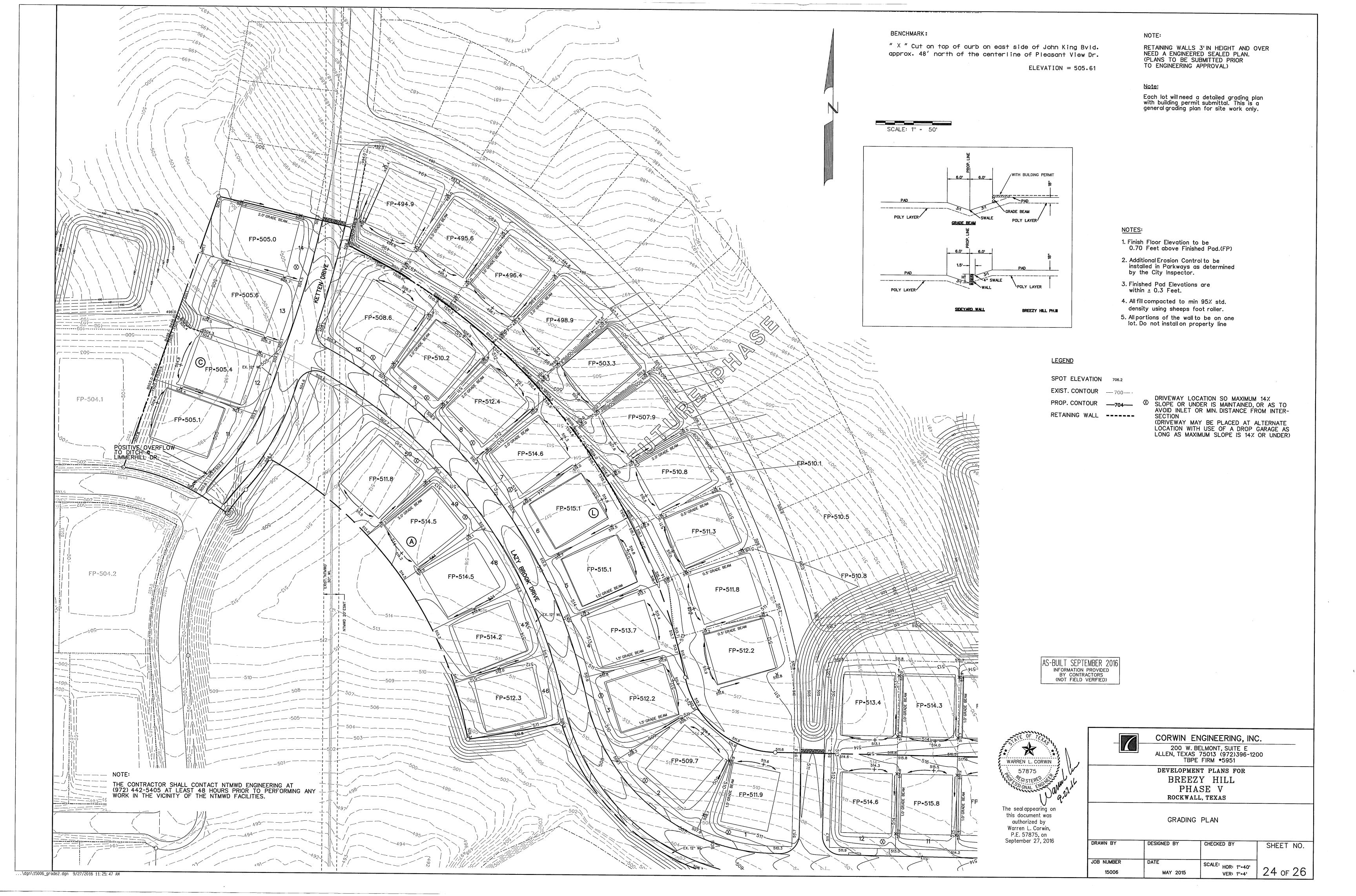

0+00

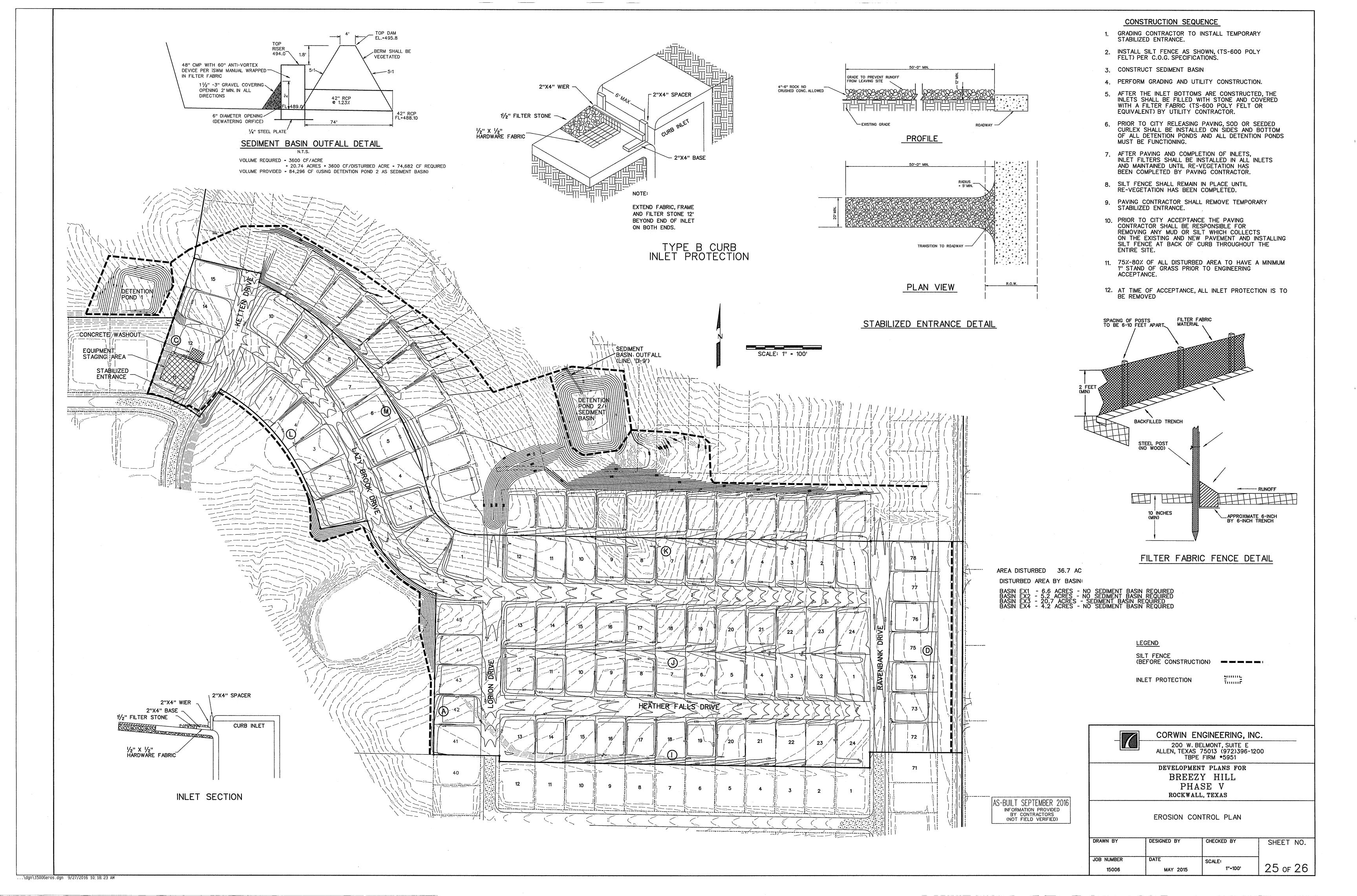

1+00

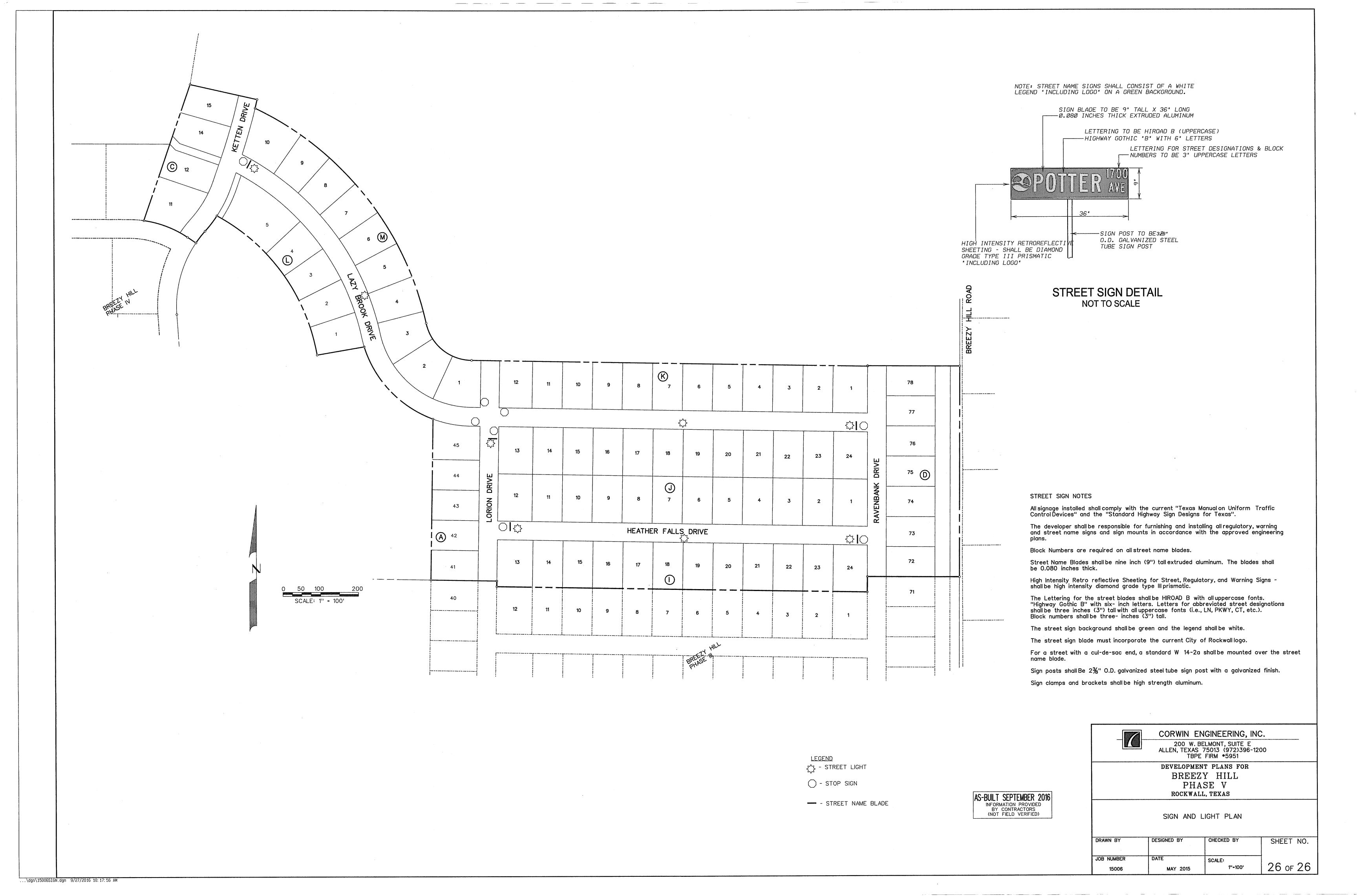

BREEZY HILL
PHASE V
ROCKWALL, TEXAS

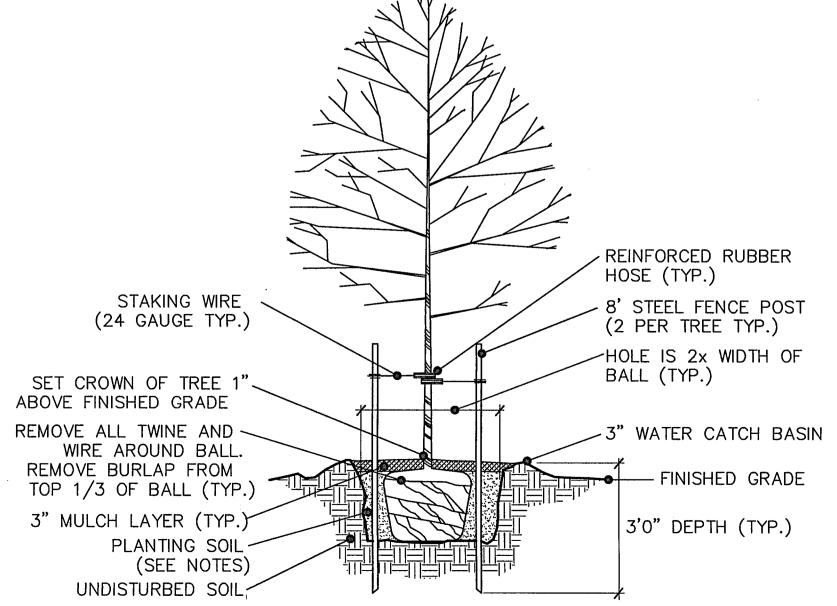

STORM SEWER PLAN AND PROFILES LINES 'D-6' & 'D-7'

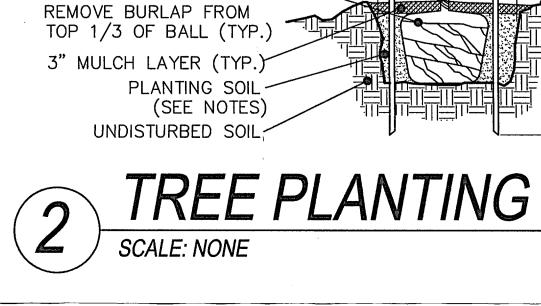
DRAWN BY	DESIGNED BY	CHECKED BY	SHEET NO.
JOB NUMBER	DATE	SCALE: HOR: 1"-40'	
15006	MAY 2015	VER: 1"-4'	18 of 26

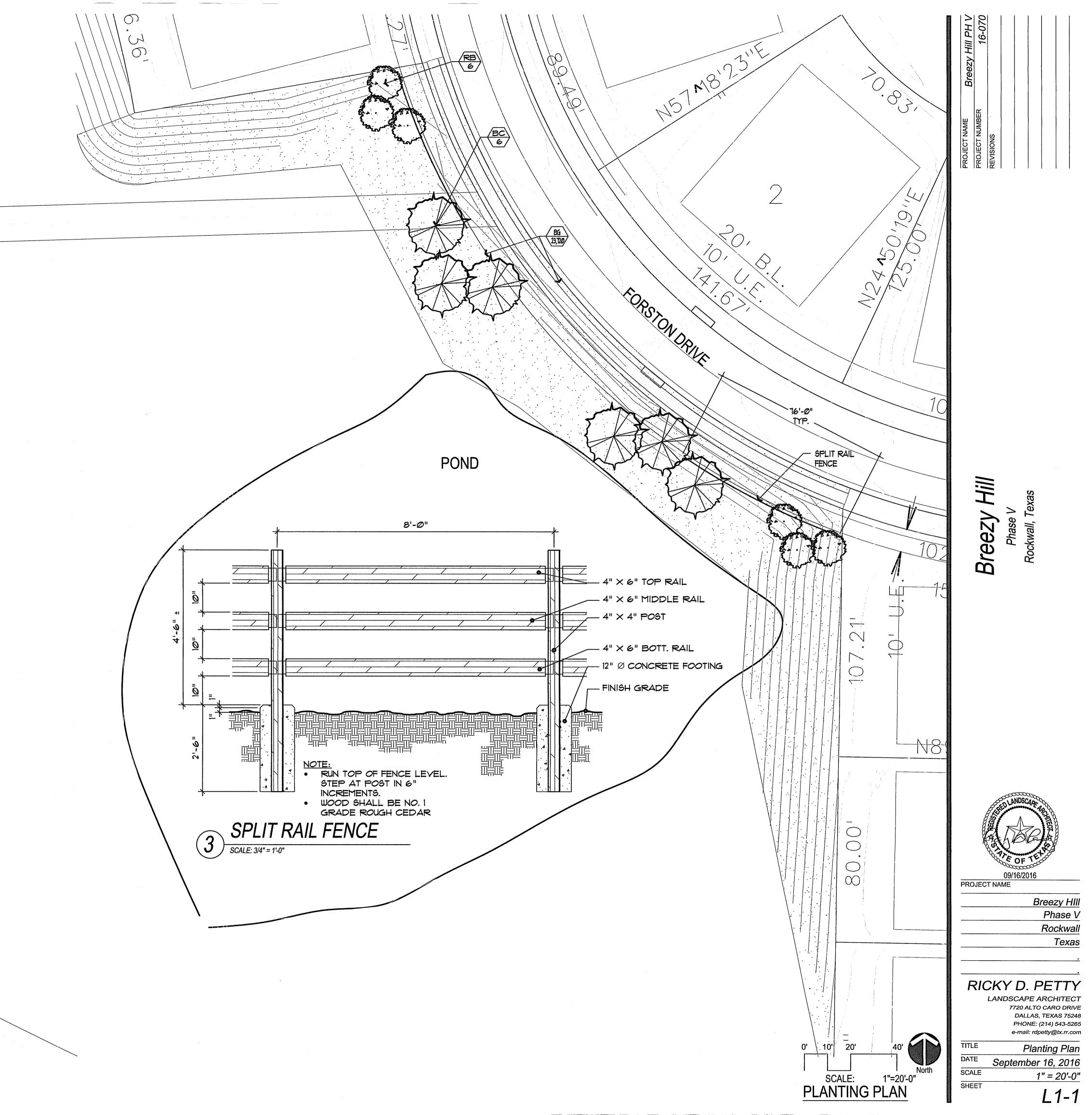











SYM	BOTANICAL NAME	COMMON NAME	QUANTITY	SIZE	NOTES
Trees					
ВС	Taxodium distichum	Bald Cypress	6 EA.	3" cal., 12' Ht. min., 6' Spread min.	B. & B., Single trunk, Well branched with Central Leader, 4' branching height
RB	Cercis canadensis 'Texana'	Texas Redbud	6 EA.	6' Ht. Min., 3' Spread Min.	B. & B., Single trunk, Well branched with Central Leader, Speciman
Misc					
BG	Cynodon dactylon	Bermuda Grass	23,720 Sq. Ft.	Solid Sod	Staggered tight joints, sand filled and rolled

PLANTING NOTES:

- 1. Submit a construction schedule of work to be approved by Landscape Architect and Owner. Failure to submit schedule may result in Landscape Architect stopping construction until submitted. No extensions of time will be considered for failure to promptly submit schedule.
- 2. Notify Landscape Architect 48 hours in advance of commencement of work to coordinate project
- 3. Locate existing underground utilities and obstructions prior to commencing work. Repair damage to utilities resulting from the installation of the work at no additional cost to Owner.
- 4. Notify Landscape Architect immediately upon encountering any unknown obstructions, grade differences or conditions not indicated on drawings. Make necessary revisions as required to conform to plans and specifications due to failure to give such notification.
- 5. Coordinate with other trades and subcontractors as required to accomplish the planting operation.
- 6. Plant material shall be tagged or approved at site by Landscape Architect prior to installation. Install plant material free of pest and diseases. Guarantee plant material for a period of 365 calendar days from date of issuance of final acceptance by Landscape Architect.
- 7. Layout proposed planting beds and receive Landscape Architect's approval prior to installation. Notify Landscape Architect of layout conflicts. Failure to notify Landscape Architect will result in Contractor's liability to relocate materials at no additional expense to Owner.
- 8. Excavate bed areas to a depth of 4 inches, backfill with 4 inches of Acid Gro Complete mix as manufacture by Soil Building Systems and rototill to a depth of 12 inches producing a homogeneous mixture.
- Final locations of plant material shall be subject to approval by Landscape Architect. Install groundcover 12 inches from the edge of shrubs and tree root balls and 4 inches from edge of paving, walls and other structures.
- Backfill tree and shrub pits with one part compost as manufactured by Soil Building Systems and two parts existing soil.
- 11. Stake tree locations and acquire written approval from Landscape Architect prior to installation of irrigation system. Do not locate tree(s) within 10 feet of any irrigation rotary spray head. Install tree(s) in areas covered by irrigation system. Provide supplemental watering as required until final acceptance by Landscape Architect. Locate tree(s) 4 feet minimum from walls, headers, property lines and other trees within project. Notify Landscape Architect of location conflicts for resolution. Failure to notify Landscape Architect will result in Contractor's liability to relocate trees at no additional expense to Owner.
- 12. Stake tree(s) immediately upon installation and within same day as planted.
- 13. Mulch planting beds and tree pits with shredded hardwood mulch.
- 14. Provide full service maintenance of landscape within project scope for a period of four (4) months, 120 calendar days, from date of issuance of final acceptance by Landscape Architect. Failure to properly maintain landscape and irrigation system will result in extending the guarantee and maintenance period at no additional expense to Owner.
- 15. All landscape areas to be watered by an automatic landscape irrigation system.

IPPIGATION | EGEND and SCHEDILE

RRIGA	ATION LEGEND and	SCHEDULE			
SYM	DESCRIPTION	MANUFACTURER	MODEL	SIZE / NOZZLE	NOTES
	Automatic Controller	Hunter	XC HYDBRID	Refer to Plan for Size	Pedestal mount with Wireless Solar Sync Sensor
•	Master Valve (w/ Pressure Regulator)	Hunter	PGV w/ AS-70 € 458200 DC Latching Solendoid	Refer to Plan for Size	Install per detail in 10" diameter valve box w/ snap on lid. Rout and paint valve number on lid.
•	Remote Control Valve	Hunter	PGV w/ 458200 DC Latching Solendoid	Refer to Plan for Size	install per detail in 10" diameter valve box w/ snap on 1id. Rout and paint valve number on 1id.
⊕ ^D	Drip Zone Valve Kit	Hunter	ICZ-101 w/ 458200 DC Latching Solendoid	Refer to Plan for Size	Install per detail in 10" diameter valve box w/ snap on lid. Rout and paint valve number on lid.
•	Rotary Spray Head Small Part - Circle	Hunter	PGP	#4 Nozzle	Install per detail with 40 PSI at base of head
0	Rotary Spray Head Small Full - Circle	Hunter	PGP	*7 Nozzle	Install per detail with 40 PSI at base of head
	Water Meter		per City	Refer to Plan for Size	installed by General Contractor
4	Wye Strainer	Febco	43Ø5	Line Size	Install 10" RD valve box. Ref Backflow Connection Detail.
M	Ball Yalve	Nibco	46603	Line Size	install 10" RD valve box.
>>4	Double Check Valve	Febco	850	Refer to Plan for Size	Furnish and install per local code by Licensed Irrigation Contractor
	Irrigation Sleeve		Sch 40 w/12 ga. Pull wire in sleeve	Refer to Plan for Size	Driveway sleeve(s) installed by General Contractor Sidewalk sleeves installed by Irrigation Contractor
5 5	Irrigation Main Line		Class 2 <i>00</i>	Refer to Plan for Size	18" installation depth
5	Irrigation Lateral Line		Class 2 <i>00</i>	Refer to Plan for Size	12" installation depth
<u> </u>	Drip Tubing	Hunter	PLD-06	536"ID x 12" emitter spacing at 06 GPH	Install per details at 12 inches on center
	Program and Station num	ber for Automatic C	ontroller		

──Valve size in inches

←Gallons per minute, per valve

IRRIGATION NOTES:

- I. Provide a complete, functioning automatic irrigation system including labor, materials, fees, taxes, equipment and other costs incidental to accomplishing
- Acquire written approval from Landscape Architect for material substitutes prior to commencing the installation.

 Locate existing underground utilities or obstacles prior to commencing installation. Repair damage to utilities or finishes resulting form work at no additional expense to Owner.

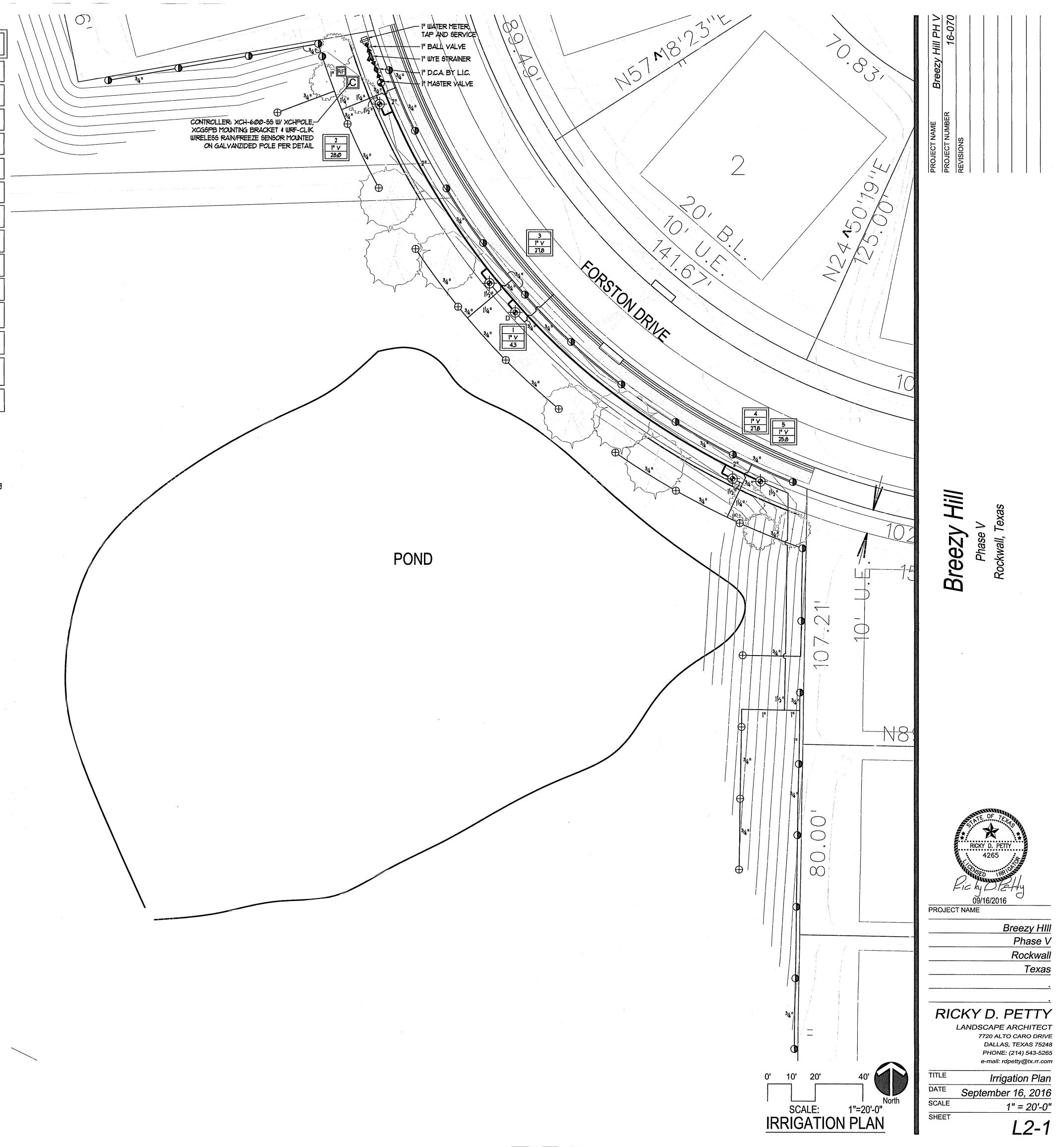
- Piping is diagrammatic. Adjust as required for existing utilities, obstructions, tree root balls, etc.
 Install work in accordance with applicable local codes and ordinances.

 Coordinate installation with landscape contractor and other trades.

 Locate each end of irrigation sleeves dimensionally on the Record "As-Built" Drawings.

 Contractor shall be responsible for damage to plant material due to system failure from inferior workmanship, during the installation of plants and
- 9. Extend one extra control wire to farthest valve, routed parallel to common ground wire with installation of lead and common wires.

 10. Control wire shall be direct burial, 600 volt, single conductor, solid copper, plastic insulated cable, rated for direct burial applications, U.F., U.L. approved, 14 gauge minimum lead and common ground return wire unless noted otherwise. Color of insulation as follows:
- Lead Wire: any color (same color), except white or orange Common Ground Wire: white (color)
- Extra Control Wire: Orange (color)
 All P.V.C. pressure main line and lateral lines shall receive as follows:
- 18" minimum cover for main lines • 12" minimum cover for lateral lines
- 12. Make final electrical connection of controller per local electrical code. Provide all necessary fuse boxes, conduit, fittings, connectors or other electrical devices to make connection. Owner shall provide electrical service within 20 linear feet of controller location unless noted otherwise on
- 13. Coordinate sleeve and conduit requirements with General Contractor.


 14. Connect remote sensors to controller with ground wire in series prior to connecting to remote control valves.

 15. Owner or Landscape Architect shall determine final controller location.

EQUIPMENT SHALL BE INSTALLED AS SPECIFIED. EQUIPMENT SUBSTITUTIONS WILL NOT BE ALLOWED.

LYDPAILIC CALCIL ATIONS

HYDRAULIC CALC	-ULAI	IONS	
ITEM	SIZE	PSI	NOTES
Maximum GPM			Fitting Loss Accounted By Adding 10%
Estimated - 28 GPM			To Flow Shown in Manuf. Nozzle Chart.
Service	1"	5.90	TYPE "K" COPPER 25 LN. FT.
Water Meter	1"	4.60	
Ball Valve	1"	020	
Wye Strainer	1"	020	
Backflow Preventer	1"	6.00	
Master Valve	11/2"	3.00	
Main Line	2"	120	235 Ln. Ft.
Station Valve	11/2"	3.00	
Zone		5.00	
Head		40.00	
	- 		
Total Loss		69.10	
Assumed Static Pressure		70.00	
Pressure Differential		0.90	

GENERAL NOTES:

1. SET TOP OF HEAD FLUSH WITH FINISH

2. FLUSH PIPING PRIOR TO INSTALLING

NOZZLE 3. SET HEAD OFFSET OF LATERAL AND MAINLINE PIPING

CONSTRUCTION NOTES:

A. FINISH GRADE B. ROTARY SPRAY HEAD

C. 3/4" LASCO UNITIZED O-RING SWING JOINT ASSEMBLY

D. LATERAL PIPING E. PAYING

ROTARY SPRAY HEAD NOT TO SCALE

> GENERAL NOTES: 1. INSTALL PEA GRAVEL FLUSH WITH BOTTOM OF PIPE & VALVE.

2. MAIN LINE SHALL HAVE A MINIMUM OF 18" COVER. 3. LATERIAL LINE SHALL HAVE A MINIMUM 12" COVER 4. PROVIDE A 12" WIRE EXPANSION COIL AT EACH DRY SPLICE WIRE CONNECTION. 5. CENTER VALVE ASSEMBLY IN VALVE BOX.

P CONSTRUCTION NOTES:

A. 12" DIA. WIRE COIL B. WATERPROOF WIRE CONNECTORS C. 10" DIAMETER VALVE BOX W/ LOCKING LID.

SET 1/4" ABOVE FINISH GRADE G D. FINISH GRADE /H E. AUTOMATIC VALVE F. LATERAL LINE PVC, REF. PLAN

J G. WASHED PED GRAVEL - 12" DEPTH MIN. H. MAINLINE PVC, SEE SPECIFICATION AND PARTS LIST

I. 6" VALVE BOX EXTENSIONS J. VALVE WIRING

12" 18"

REMOTE CONTROL VALVE NOT TO SCALE

GENERAL NOTES:

INSTALL ELECTRICAL WIRING PER LOCAL CODES. CONTRACTOR SHALL BE RESPONSIBLE FOR ALL

ELECTRICAL WORK PROVIDE DRAINAGE AWAY FROM BASE OF

PEDESTAL.

4. GROUND IRRIGATION BOXES WITH GROUNDING ROD PER N.E.C.

INSTALL TEMPERATURE SENSOR TO NORTH SIDE OF CONTROLLER PEDESTAL W/ STAINLESS STEEL

CONSTRUCTION NOTES:

A. CONTROLLER

B. PEDESTAL

C. ELECTRICAL SERVICE CONDUIT D. REMOTE CONTROL YALVE WIRING CONDUIT GROUNDING ROD(S) PER MANUFACTURER'S

REQUIREMENTS ANCHOR BOLTS G. CONCRETE BASE, 3,000 PSI

PEDESTAL MOUNTED CONTROLLER NOT TO SCALE

GENERAL NOTES: 1. INSTALL WASHED PEA GRAVEL BELOW DCA TO ALLOW ACCESS TO TEST COCKS AND OPERATION OF BALL VALVES

2. INSTALL PEA GRAVEL FLUSH WITH

ELECTRIC YALVE. 3. PROVIDE A 24" WIRE EXPANSION COIL AT EACH DRY SPLICE WIRE

CONNECTION. 4. CENTER VALVE ASSEMBLY IN VALVE BOX.

CONSTRUCTION NOTES: A. WATER METER (SIZE PER PLAN) B. BALL VALVE (SIZE PER LINE) C. WYE STRAINER (SIZE PER LINE) D. TYPE "K" COPPER PIPE E. COPPER SXT COUPLING F. TBE NIPPLE

G. PIPE PER CITY CODE

H. COUPLING I. FINISH GRADE

J. 12"x17" VALVE BOX. SET FLUSH WITH FINISH GRADE K. DOUBLE CHECK YALVE ASSEMBLY

L. COMPACTED SUBGRADE M. MALE ADAPTER

N. MASTER ELECTRIC VALVE O. WIRE COIL P. WATERPROOF WIRE CONNECTORS Q. 10 ML BLACK PLASTIC

R. 10" RD VALVE BOX. SET 1/4" ABOVE FINISH GRADE. S. WASHED PEA GRAVEL - 6" DEPTH MIN T. YALYE WIRING

□/-5 □

GENERAL NOTES:

NOT EXCEED DRIP LINE RUNS GREATER THAN 170 LN. FT.

CONSTRUCTION NOTES:

A. MULCH (REF. LANDSCAPE

DRIP LINE / CRUSHER FINES

DRIP VALVE/FILTER ASSEMBLY

DRAWINGS)

B. DRIP LINE

NOT TO SCALE

NOT TO SCALE

RAIN SENSOR

BACKFLOW PREVENTER CONNECTION

NOT TO SCALE

NOT TO SCALE

CONTRACTOR SHALL PLACE DRIPLINE TO ASSURE ADEQUATE WATERING FOR PLANT GROWTH AND YIABILITY. DO

C. BED PREP (REF. LANDSCAPE PLAN)

CONSTRUCTION NOTES:

E. WATER PROOF WIRE CONNECTOR.

I. LOCKING YALVE BOX COVER.

L. 4" LAYER OF 3/4" GRAVEL

M. TRUE UNION BALL YALVE.

J. VALVE BOX EXTENSIONS IF NEEDED.

B. FINISHED GRADE.

C. 24" WIRE LOOP.

F. SCH 80 NIPPLE.

K. LATERAL LINE.

O. CM.U. BLOCK

CONCRETE FOOTING NOTES:

AS APPROVED BY L.A.

ABOVE FINISH GRADE

LOCATE POLE NEXT TO CONTROLLER

CONNECT SENSOR TO CONTROLLER

PER MANUFACTURER'S SPECS.

TOP OF CONCRETE FOOTING I"

CONSTRUCTION NOTES:

A. WEATHER STATION - ROTATE

POINTS SOUTH

C. FINISH GRADE

SO THERMOSTAT PORTION

B. 2" GALV. SCH. 40 STEEL PIPE

VALVE BOX BOTTOM.

G. PRESSURE REGULATOR.

A. 12" X 17" PLASTIC VALVE BOX WITH LOCKING LID.

D. AUTOMATIC VALVE, SEE IRRIGATION PART LIST.

MAINTENANCE AND REPLACEMENT OF FILTER.

H. WYE STRAINER. INSTALL TO PROVIDE ACCESS FOR

N. 6MM BLACK POLYETHYLENE PLASTIC. TAPE TO ALL

INLET AND OUTLET PIPE AND INSTALL FULL LENGTH OF

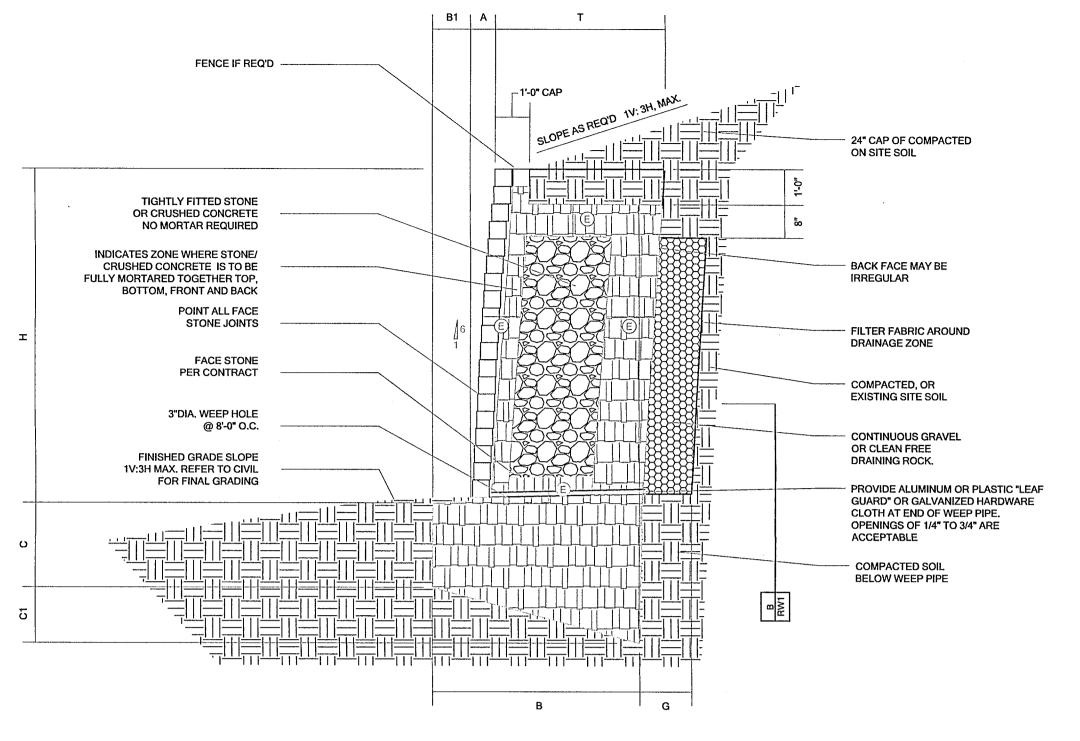
量

Breezy

RICKY D. PETTY 09/16/2016

PROJECT NAME Breezy HIII Phase V

> Rockwall Texas

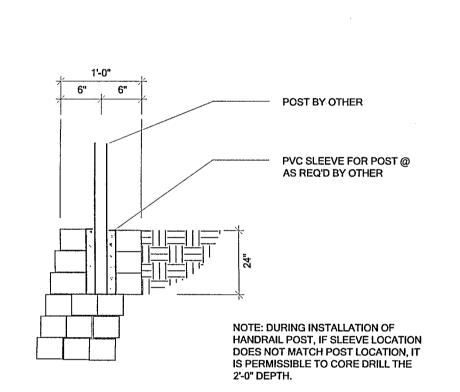

> > DALLAS, TEXAS 75248

RICKY D. PETTY LANDSCAPE ARCHITECT 7720 ALTO CARO DRIVE

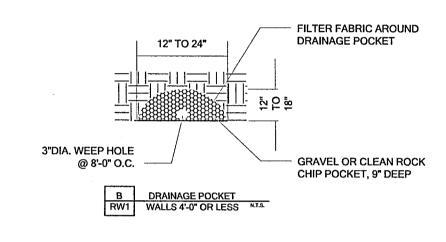
PHONE: (214) 543-5265 e-mail: rdpetty@tx.rr.com Irrigation Details DATE September 16, 2016 SCALE

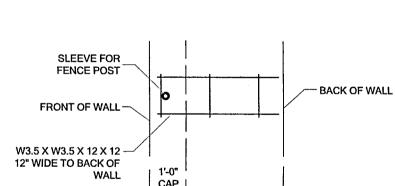
NONE L2-2

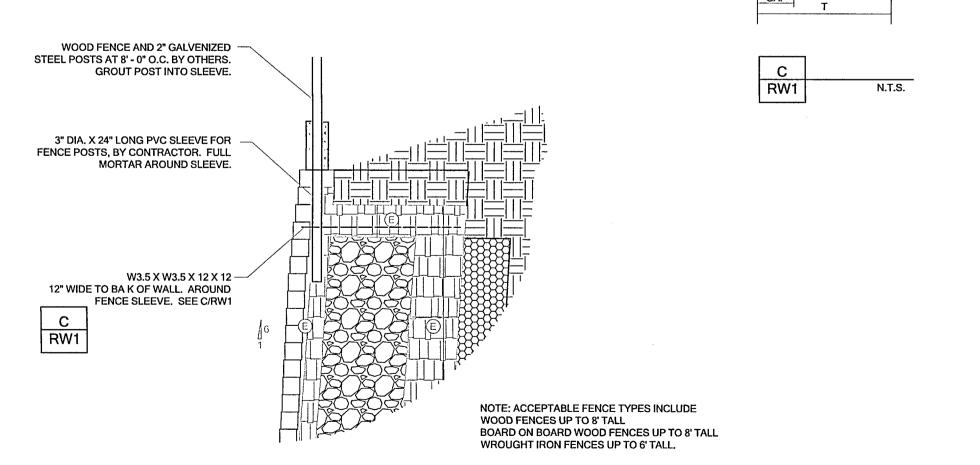
SHEET


4" EXPANSION 1" MORTAR JOINT MATERIAL ____ PROVIDE CONTROL JOINTS
@ 16'-0" O.C. MAX. 1/2" JOINT

TYPICAL PLAN VIEW AT CORNER


8'-0" MAX. PROVIDE 3" DIA. WEEP HOLES PROVIDE CONTROL JOINTS @ 16'-0" O.C. MAX.


TYPICAL PLAN VIEW AT BASE


RW1/1 DETAIL OF TYPICAL MASONRY WALL

WALL SECTION W/ FENCE POST

DETAIL OF WALL WITH WELDED WIRE FABRIC FOR FENCE SLEEVE

			RW1/1 - 1	MASONRY WA	LL SCHEDULE	-1800 psf		· · · · · · · · · · · · · · · · · · ·	
		3	.800 psf - BEARING	CAPACITY (COMPA	CTED AND TESTED	OR NATURAL SOILS	5)		
WALL	BASE	TOE	BASE	BASE	BATTER	FULLY MORTARED	THICKNESS	DRAINAGE ZONE	BEARING
HEIGHT	WIDTH		DEPTH (TOE)	DEPTH (HEEL)		ZONE	OF WALL	THICKNESS	CAPACITY
Н	В	B1	С	C1	А	E	T	G	
1' - 0''	1' - 1"	0' - 1"	0' - 9''	0' - 2"	0' - 2"	FULLY	1' - 0"	SEE B/RW1	
2' - 0"	1' - 6"	0' - 3"	0' - 9''	0' - 3"	0' - 4"	FULLY	1' - 3"	SEE B/RW1	
3' - 0''	1' - 11"	0' - 3"	0' - 10''	0' - 4"	0' - 6''	FULLY	1' - 8''	SEE B/RW1	
4' - 0''	2' - 3"	0' - 4"	1' - 0''	0' - 5"	0' - 8"	FULLY	1' - 11"	SEE B/RW1	1000
5' - 0"	2' - 6''	0' - 5"	1' - 4''	0' - 6''	0' - 10''	0' - 9''	2' - 1''	0' - 9"	1800 psf
6' - 0''	3' - 0"	0' - 6"	1' - 6''	0' - 7"	1' - 0''	0' - 9"	2' - 7''	1' - 0''	
7' - 0''	3' - 6''	0' - 7"	1' - 8"	0' - 8"	1' - 2"	0' - 10''	2' - 11"	1' - 0"	
8' - 0''	4' - 0"	0' - 9"	1' - 11"	0' - 9''	1' - 4"	1' - 0"	3' - 3''	1' - 3"	
				WALL DESIG	N CRITERIA				
BEARING	SLOPE TOP	SLOPE BOT	ACTIVE PRESSURE	PASSIVE PRESSURE	FRICTION ANGLE BASE	SLOPE OF BACK OF WALL	SURCHARGE		
Q₃	β	β_1	фа	Фр	δ	α	q		
1800 psf	18.4 deg	18.4 deg	30 deg	30 deg	17 deg	99.5 deg	0 psf		

RW1/1 MASONRY WALL SCHEDULE 1. Design Building Code International Building Code, 2009 Edition

2. Geotechnical Report Firm: EWI Report No: BH153460R

Dated: May 22, 2015 Allowable Bearing Capacity: 1800psf on undisturbed or properly compacted fill soils.

An 1800 psf bearing capacity is anticipated throughout the site. Each wall section has a design for multiple bearing capacity options. It will be field verified which bearing condition to use based on the conditions of the soil at the base of the wall during excavation. If the bearing capacity changes along the length of the retaining wall it is permitted to change bearing capacity designs as necessary.

3. Geotechnical Criteria

Bearing on Stiff Natural Undisturbed Clayey Soils or Compacted and Tested Soils Allowable Bearing: 1800 psf, minimum Friction Angle between Base of Wall and Soil - 17 degrees

Backfill Soil Parameters:

Backfill Soil - Natural Clays or Fill Soils Backfill Angle of Internal Friction PHI = 30 degrees

Base Soil Parameters:

Soil at Toe - natural, Undisturbed or Fill Soils

Angle of Internal Friction PHI = 30 degrees

The backfill soil angle of internal friction referred to above is a composite angle of internal friction and includes both cohesion and angle of internal friction of the soils.

The use of very wet or very dry backfill soil should be avoided. The use of heavy equipment within 3'-0" of the wall could damage the wall and should be avoided.

Locate base of walls on undisturbed or properly compacted soil.

Average density of masonry stone wall varies from 135 pcf to 145 pcf. Size of stone within wall varies from 4" to 18". Crushed concrete with or without rebar is acceptable to be used in the wall construction.

Drainage zone materials may be composed of clean gravel or stone ranging from 1" to 5". Crushed concrete is acceptable provided it is clean and generally free of dust or other deletrious materials.

Portland Cement Mortar for Retaining Wall Construction.

The Portland cement mortar used for construction of the above grade portion of the masonry stone retaining walls shall be provided with the following proportions per cubic yard of concrete. The Portland cement mortar supplier shall provide "batch tickets" clearly indicating that the appropriate amount of materials are provided in each concrete mixer truck load. The batch tickets shall clearly indicate the amount batched, the date, the project name and shall be provided to DirtSavers, LLC. for review, documentation, and file.

Contents Amount per cubic yard Type F Fly Ash: Fine Aggregate (sand): 3,250 lbs. Potable Water: 235 lbs. Type 1 Portland Cement: 376 lbs. Admixture Eucon 100: 48 oz. average

Concrete retarders such as "Eucon 100 Retarder" may be used at the discretion of the masonry wall contractor. A greater amount of retarder (about 64 ounces) is typically used during hot periods and a less amount of retarder (about 32 ounces) is typically used during cool weather.

Please note that the above proportions will provide a Portland cement mortar with a compressive strength of about f'c = 2000 psi. DirtSavers, LLC. does not require any concrete testing provided the above proportions are verified by way of the "batch tickets".

5. Construction Reviews

DirtSavers, LLC. shall be called for construction review of masonry wall.

6. Retaining Wall Design Constraints

Retaining walls should not have solid fence placed on top of wall other than that shown on these plans. Retaining walls shall not have additional surcharge placed above the wall other than that shown on these plans. Retaining walls shall not have slope at base or top of wall that exceeds that which is shown on these plans. The retaining walls noted above require special design.

Minor variations in the construction of the retaining walls from these documents may be accepted at the discretion of the design engineer.

TO Chesapeake Court

KCONS RPM

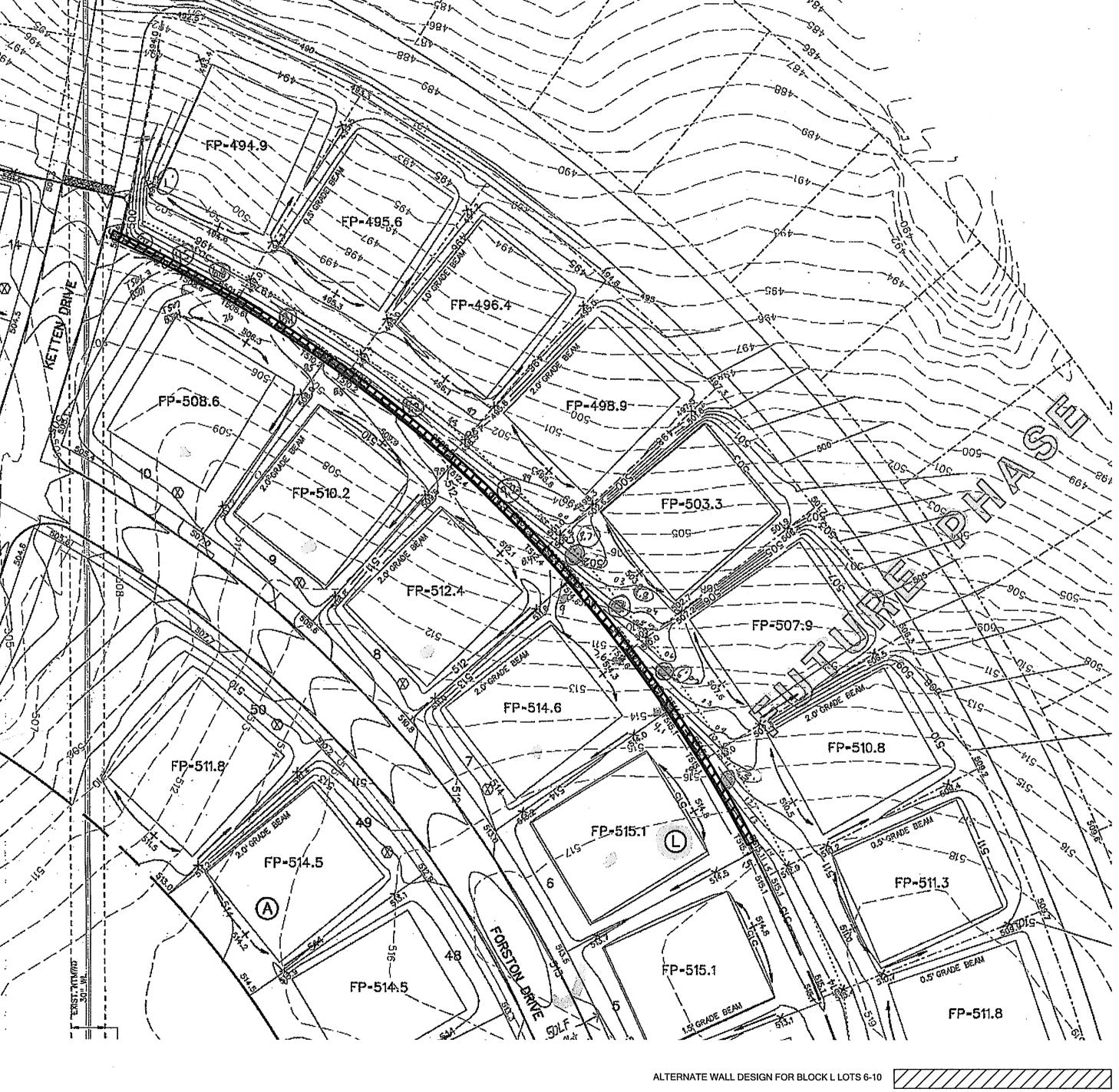
BRE

No. Date Item REVISIONS DB: MAM CHK'D; MAM APP'D: MAM

RETAINING WALL DETAILS AND NOTES

RW120415-12.04.2015 12.04.2015

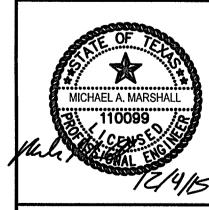
RW1



RW2/1 ALTERNATE SLOPE MASONRY WALL

			1800 psf - BEARING	CAPACITY (COMPA	CTED AND TESTED	OR NATURAL SOILS	5)		
WALL	BASE	TOE	BASE	BASE	BATTER	FULLY MORTARED	THICKNESS	DRAINAGE ZONE	BEARING
HEIGHT	WIDTH		DEPTH (TOE)	DEPTH (HEEL)		ZONE	OF WALL	THICKNESS	CAPACITY
Н	В	B1	С	C1	А	E	Т	G	
7' - 0''	3' - 10''	0' - 10''	1' - 8"	0' - 8''	1' - 2"	0' - 10"	3' - 0''	1' - 0"	
8' - 0''	4' - 6"	1' - 0"	2' - 0"	0' - 10''	1' - 4"	1' - 0''	3' - 6"	1' - 3"	
9' - 0''	5' - 2"	1' - 2"	2' - 6"	0' - 11"	1' - 6"	1' - 2"	4' - 0''	1' - 6"	1800 psf
10' - 0"	6' - 0''	1' - 4"	2' - 9"	1' - 1"	1' - 8"	1' - 4"	4' - 8''	1' - 9"	
11' - 0''	6' - 9"	1' - 6''	3' - 0''	1' - 3"	1' - 10''	1' - 6"	5' - 3"	2' - 0"	
				WALL DESIG	N CRITERIA				
BEARING	SLOPE TOP	SLOPE BOT	ACTIVE PRESSURE	PASSIVE PRESSURE	FRICTION ANGLE BASE	SLOPE OF BACK OF WALL	SURCHARGE		
Q _a	β	β1	Фа	Фр	δ	α	q		
1800 psf	5.7 deg	18.4 deg	30 deg	30 deg	17 deg	99.5 deg	0 psf		

ALT MASONRY WALL SCHEDULE
SCALE: N.T.S. RW2/1


ALT MASONRY WALL LOCATION
SCALE: N.T.S.

2708 Chesapeake Court Grapevine, TX 76051

RPM xCONSTRUCTION, BRE

REVISIONS DB: MAM CHK'D: MAM APP'D: MAM

RETAINING WALL **DETAILS AND NOTES**

RW2